Погода в Санкт-Петербурге | Pogoda78.ru

16:31Суббота21 Февраля
Главная » Статьи » Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Теплообмен организма со средой сбалансирован. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.  [1]

Теплообмен организма зависит от его физического напряжения, окружающих условий и избыточной теплоты, выделяемой в ходе технологических процессов.  [2]

Определенное значение для теплообмена организма имеют и теплопотери через органы дыхания, происходящие за счет нагревания вдыхаемого воздуха и испарения влаги с поверхности дыхательных путей.  [3]

Как известно, условия теплообмена организма с окружающей средой обеспечивают его определенное тепловое состояние.  [4]

Суммируя сведения об особенностях теплообмена пойкилотермных организмов , подчеркнем принципиальное значение эктотермности этих форм, в основе которой лежит низкий уровень метаболизма. В силу этого температура тела, скорость физиологических процессов и общая активность пойкилотермов прямо зависят от температуры среды. Термические адаптации смягчают эту зависимость, но не снимают ее. Они реализуются главным образом по отношению к средним режимам теплового состояния среды и осуществляются преимущественно на клеточно-тканевом уровне по принципу настройки общей термоустойчивости тканей и температурного оптимума ферментов к этим режимам. Приспособления к конкретным, меняющимся температурам носят частный характер и включают отдельные формы физиологических реакций. В результате в широком диапазоне переносимых температур активная жизнедеятельность пойкилотермных организмов ограничена узкими пределами изменений внешней температуры.  [5]

Физические свойства воздуха в значительной степени определяют теплообмен организма с окружающей средой. Накопление тепла в организме происходит в результате окисления пищевых веществ и выработки тепла при мышечной работе, от лучистого тепла солнца и нагретых предметов, теплого воздуха и горячей пищи.  [6]

Относительная влажность воздуха также оказывает существенное влияние на теплообмен организма . Теплоотдача испарением увеличивается с уменьшением значения относительной влажности воздуха.  [7]

Влажность воздуха имеет большое значение, поскольку влияет на теплообмен организма с окружающей средой. Абсолютная влажность воздуха дает представление об абсолютном содержании водяных паров в граммах в 1 м3 воздуха, но не показывает степень насыщения воздуха парами.  [8]

Метеорологические условия представляют собой комплекс физических факторов, оказывающих влияние на теплообмен организма с окружающей средой и его тепловое состояние. На формирование производственного микроклимата существенно влияют технологический процесс и климат местности.  [9]

Охлаждающий микроклимат - сочетание параметров микроклимата, при котором имеет место изменение теплообмена организма , приводящее к образованию общего или локального дефицита тепла в организме ( 0 87 кДж / кг) в результате снижения температуры глубоких и поверхностных слоев тканей организма.  [10]

Охлаждающий микроклимат - сочетание параметров микроклимата, при котором имеет место изменение теплообмена организма , приводящее к образованию общего или локального дефицита тейла в организме ( 0 87 кДж / кг) в результате снижения температуры глубоких и поверхностных слоев тканей организма.  [11]

Метеорологические условия производственной среды - температура, влажность и скорость движения воздуха, определяют теплообмен организма человека и оказывают существенное влияние на функциональное состояние различных систем организма, самочувствие, работоспособность и здоровье. Кроме того нарушение теплообмена ( охлаждение или перегрев) усугубляет действие на человека вредных веществ, вибрации и других производственных факторов. Изложенное в значительной степени определяет необходимость нормирования микроклимата и разработку гигиенических требований к мероприятиям, направленным на профилактику перегрева и переохлаждения организма и сохранение высокого уровня работоспособности и здоровья человека.  [12]

Внутренний микроклимат оказывает комплексное влияние на теплообмен организма . Отрицательное действие одного его компонента может быть в определенных пределах компенсировано действием другого.  [13]

Относительная влажность воздуха определяется как отношение содержания водяных паров в 1 м3 воздуха к их максимально возможному содержанию в процентах при определенной температуре. Влажность воздуха в значительной мере влияет на теплообмен организма человека , главным образом на отдачу тепла испарением.  [14]

Собственно физиология теплообмена и терморегуляции предусматривает изучение базисных физиологических закономерностей этих процессов. В частности, изучаются интимные механизмы энергетики и теплопродукции клетки, процессы развития гипотермии и естественной гибернации. Осуществляется физиологический анализ механизмов смещения теплообмена организма с внешней средой и физиологических перестроек системы терморегуляции в различных условиях жизнедеятельности организма.  [15]

Влияние климата на режимы теплообмена человека

Климат оказывает воздействие на тепловые процессы и температурный режим ТЭХКЧ через: кровоснабжение кожных покровов, дыхательную, сердечно-сосудистую и пото выделительную системы. В технологической цепочке системы они работают как единое целое в сочетании работы каждой их них. Оказывая непосредственно участие в формировании и реализации жизненных биологических ритмов с учетом присутствия сезонных колебаний по временам года. В летний период происходит отток крови от внутренних органов к кожным покровам, поэтому артериальное давление летом ниже, чем зимой. Климатические факторы, влияющие на человека:

- Ультрафиолетовое излучение.

Оно представляет собой коротковолновый диапазон солнечного спектра с частотой = 295-400 нм.[59]. Является одним из основных защитных жизненных факторов существования нас, как биофизических объектов природы. При его недостатке происходит нарушение химических реакций, уменьшается сопротивляемость к инфекционным заболеваниям, что в конечном итоге нивелирует функции ЦНС, в части сохранения работоспособности. Территория РФ по концентрации ультрафиолетового излучения в региональных зонах условно разделена по доступным нормативным параметрам - получить за год не менее 45 «порций солнца». Зоны дефицита расположены севернее 57,5 с.ш. [59]. Температура ОС создает для нас зоны комфорта и дискомфорта. По этой причине требует проведения дополнительных мероприятий.

Для большинства людей, комфортной будет температура воздуха: в легкой одежде + 19. 20°С, без одежды + 28. 31°С [59]. Они зависят от многих факторов: географической широты, высоты над уровнем моря, времени года.

В условиях ее непостоянства климата организм выработал и успешно эксплуатирует специфические «приспособленческие» реакции. Сигнальные функции выполняют кожные рецепторы холода и тепла. При различных температурных воздействиях сигналы в ЦНС, ИмС и висцеральную нервную системы постоянно поступают из рецепторных зон. Это обстоятельство создает градиенты температуры внешней среды с температурой тела и считается определяющим параметром системы терморегулирования. С учетом колебаний температура окружающей среды и температуры тела постоянно происходит теплообмен, в основном через дыхательные пути.

В нормальном состоянии покоя между ними есть динамическое равновесие.

В случае необходимости получения более точных данных для эргономических исследований функциональных органов, влияющих на производительность труда, можно воспользоваться эмпирическими производными. Или воспользоваться КМ в сочетании с тепловизион- ными датчиками. Предлагается следующая форма сводной таблицы, которая дает данные для анализа и должна быть оформлена протоколом измерений по рекомендуемой форме.

Рекомендуемая форма аналитической таблицы:

Численные значения тепловых показателей БЭК за рабочий день

Теплоотдача

  • (Кка
  • л)
  • 1римечание.
  • 1исленные значения тепловых показателей БЭК за рабочий день (в ккал); Тепловой эквивалент электрической мощности за сутки 24 ч. - 27,9 ккал./Вт.

Адаптация к воздействию низкой температуры.

Как протекает процесс адаптации к низкой температуре? Что происходит в организме человека при охлаждении. Вследствие раздражения рецепторов холода изменяются рефлекторные реакции, регулирующие сохранение тепла: сужаются кровеносные сосуды кожи, что на треть уменьшает теплоотдачу организма. Условия, привыкания человека к холоду по социальному и профессиональному признаку всегда отличаются. При этом действие холода иногда бывает не постоянным по условиям температурного цикла теплового ядра.

Своеобразно протекает адаптация человека к условиям жизни в северных широтах с полным набором факторов воздействия внешней среды и искусственно создаваемого комфортного самочувствия. Эта социальное мероприятие вызвано экономическими соображениями государственного уровня. Соответственно, есть все необходимые и достаточные условия для реализации широкого спектра научных изысканий. В качестве наглядного примера интенсификации энергетических процессов в условиях холода можно привести липидный обмен.

Основную массу рациона людей, проживающих на Севере как временно, так и постоянно, составляют белки и жиры. Поэтому в их крови содержание жирных кислот повышено, а уровень сахара несколько понижен. У людей, приспосабливающихся к влажному, холодному климату и кислородной недостаточности Севера, также повышенный газообмен, высокое содержание холестерина в сыворотке крови и минерализация костей скелета, более утолщенный слой подкожного жира (выполняющего функцию теплоизолятора). Общеизвестно и не требует особых доказательств, что обеспечение потребности организма в аскорбиновой кислоте (витамин С), повышает устойчивость организма к инфекциям. Одним из наиболее важных факторов, обеспечивающих адаптацию человека к условиям Крайнего Севера, является одежда. Российскими учеными создан и используется в изготовлении спецовок уникальный нетканый материал из нефтегазового сырья, обеспечивающий очень комфортные условия работы.

Адаптация к воздействию высокой температуры.

Агрессивные факторы окружающей среды, в первую очередь высокая температура ОС и влажность воздуха возбуждает тепловые рецепторы, включающие рефлекторную способность повышения объема теплоотдачи. Расширяются сосуды, ускоряя кровоток и увеличивая теплопроводность мышечных тканей в разы. В случае продолжения повышения температуры ОС и тела происходит рефлекторное потоотделение.

У чувствительных людей они «разбалансируют» организм и увеличивают у них риск проявления острых заболеваний. Одной из распространенных форм автор считает расстройство психики человека.

Так называемый «эффект отсутствия присутствия» «зомбическо- го» характера. В искусственных и естественных условиях высокая температура в сочетании с воздействия солнечных магнитных бурь, отрицательно влияет на организм человека, но при этом вызывает его ответную защитную реакцию и приводит в действие адаптивные рецепции, заложенные в геноме.

Ветер, влажность воздуха, природные климатические усиливают или снижают температурные параметры нашего тела. Последнее особенно заметно и активно используется в лечебно-профилактической и медицинской практике. Например, влияние горного климата. Высокогорная адаптация вызывает рост лейкоцитов, максимум которых (+ 40%) достигается примерно к 40-му дню пребывания в горах [59]. Однако, при длительном нахождении на высокогорье увеличивается количество эритроцитов с гемоглобином, повышающих кислородную емкость крови (сухое вещество эритроцита содержит до 95% гемоглобина). Рост концентрации эритроцитов начинается со 2-3 дня и может возрастать на 40-50% к 4-й неделе пребывания в горах (доходит до 8 млн./ммЗ, в то время как у жителей равнины их 4,5-5 млн./ммЗ) [59].

Метеорологические условия и теплообмен человека

Нормальная жизнедеятельность организма и высокая работоспособность возможны лишь в том случае, если без значительного напряжения терморегуляции в организме сохраняется тепловое равновесие, т. е. соответствие между продукцией тепла и его отдачей во внешнюю среду. Ухудшение условий отдачи тепла ведет >к его накоплению в организме и к перегреву, а иногда и к тепловому удару. Избыточная потеря тепла вызывает охлаждение, простудные заболевания и отморожения. Человек приспособляется к тепловым условиям внешней среды активно, используя одежду, жилище, отопление, и пассивно посредством процессов терморегуляции, приводящих в соответствие теплопродукцию и теплоотдачу организма.

Теплопродукция организма возрастает с усилением мышечных движений. В состоянии покоя она равняется 50—70 ккал в час, а при тяжелой работе достигает 300—500 ккал и более.

Отдача тепла организмом зависит от тепловых условий окружающей среды, которые определяются температурой, влажностью, скоростью движения воздуха и лучистой энергией, ибо все эти метеорологические факторы, в своей совокупности влияют на теплообмен организма. Иными словами, теплоотдача организма зависит от сочетания перечисленных метеорологических факторов, или, как принято говорить, от микроклимата.

Под микроклиматом понимают климат на ограниченном пространстве, т. е. совокупность метеорологических элементов, характерных для определенного участка местности, района, города, улицы или отдельного помещения. Таким образом, можно говорить о микроклимате города, какойлибо его улицы, больничной палаты, операционной, кузницы и т. п. Чтобы понять влияние того или иного микроклимата на теплообмен организма, рассмотрим, какими путями происходит отдача тепла.

В нормальных условиях (при комнатной температуре, равной 18°) человек теряет около 85% тепла через кожу и 15% тепла на нагревание принимаемой пищи, питья, вдыхаемого воздуха и на испарение воды в легких. Из 85% тепла, отдаваемого через кожу, примерно 30% теряются проведением, 45%—излучением и 10% — за счет испарения влаги с поверхности кожи.

Эти соотношения значительно меняются в зависимости от условий микроклимата.

Путем проведения тело теряет тепло на нагревание окружающего воздуха (конвекция). Потеря тепла конвекцией прямо пропорциональна разности между температурой кожи и температурой воздуха. Чем ниже температура воздуха, тем больше теплоотдача конвекцией. Если же температура воздуха возрастает, то потеря тепла конвекцией падает, а при температуре 35—36° совсем прекращается.

Рассмотрим, от чего зависит потеря тепла излучением. Как известно, каждое физическое тело, имеющее температуру выше абсолютного нуля (—273°), испускает тепловые лучи. Количество излучаемого тепла возрастает с повышением температуры тела. Поэтому человек излучает больше лучистого тепла, чем получает от окружающих его стен, если их температура ниже 35°, и в итоге теряет тепло. Таким образом, потеря тепла излучением повышается с увеличением разности между температурой тела человека и температурой находящихся на расстоянии от него стен или других предметов. В условиях открытой атмосферы потеря тепла излучением зависит от интенсивности солнечной радиации, температуры почвы, стен домов.

Потеря тепла испарением зависит от количества влаги (пота), испаряющейся с поверхности тела. При испарении 1 г пота организм отдает около 0,6 ккал тепла. При комнатной температуре с поверхности кожи человека испаряется около 0,5 л пота в сутки, с которыми отдается примерно 300 ккал тепла.

С повышением температуры воздуха и стен потеря тепла излучением и конвекцией понижается и резко увеличивается теплопотеря испарением. Если температура внешней среды выше температуры тела, то единственно возможной является потеря тепла за счет испарения. В особо трудных условиях (при тяжелой работе и высокой температуре внешней среды) количество выделяемого пота достигает 6—10 л в день, при испарении их организм может потерять 3600—6000 ккал тепла.

Движение воздуха усиливает потерю тепла конвекцией и испарением и, следовательно, при высокой температуре внешней среды является благоприятным фактором. Поэтому в жаркую погоду обмахивание, обдувание вентилятором и т. п. улучшают самочувствие, а безветрие, ухудшая теплоотдачу, способствует перегреву. При низкой температуре внешней среды движение воздуха, увеличивая теплоотдачу конвекцией, является неблагоприятным фактором и усиливает опасность отморожения и простуды. Даже при высокой температуре внешней среды, если одежда у человека влажная или кожа его покрыта потом, сильное движение воздуха (сквозняк), резко увеличивая потерю тепла испарением, может привести к простудному заболеванию.

Большая влажность воздуха (выше 60—70%) оказывает неблагоприятное влияние на теплообмен как при высокой, так и при низкой температуре. Если температура воздуха высокая (выше 30°), то большая влажность ведет к перегреванию; в воздухе, насыщенном водяными парами, затрудняется испарение пота, в то время как в этих условиях испарение является единственно возможным путем потери тепла; человек сильно потеет, но при этом охлаждающий эффект отсутствует. При низкой температуре высокая влажность воздуха способствует более сильному охлаждению. Это объясняется тем, что во влажном воздухе усиливается потеря тепла конвекцией. Кроме того, в воздухе, богатом водяными парами, увеличивается влажность одежды, а вместе с этим повышается ее теплопроводность. Слишком сухой воздух (влажность ниже 30—20%) также вреден, он вызывает быстрое высыхание слизистых оболочек носоглотки, неприятное ощущение сухости. во рту и горле, глубокие трещины слизистой оболочки губ и другие болезненные явления.

Влияние переменности теплофизических свойств на теплообмен

Как правила предыдущих параграфов не было учета переменности теплофизических свойств. Например, у нас имеется некоторая жидкость, у которой при изменении температуры сильно меняются свойства, из-за чего у нас изменяется КТО по теплообменнику. Как правила учитывать изменение свойств поперек потока не представляет труда, в радиальном направлении это не так. Изменение свойств в радиальном направлении требуется учитывать особенно при очень больших (qc). В случаи ламинарного течение это делается легко путем внесение под знак дифференциала, в турбулентном течении все намного сложнее. Дальнейший анализ будет проходить при (qc) больших.

В капельных не металлических жидкостей при увеличение температуры сильно уменьшается вязкость. Если у нас происходит нагрев, скорости у стенки увеличивается, а скорость в центре уменьшается, КТО увеличивается, гидравлическое сопротивление уменьшается. Обратно происходи если охлаждать стенку. Качественно это выглядит так

Изменение теплофизических свойств газов. Плотность из уравнения идеального газа . Теплоемкость растет почти линейно при увеличении температуры, также теплопроводность и вязкость при увеличении температуры.

В случаи когда мы учитываем термический начальный участок и изменение свойств при турбулентном течении используется. Газы при больших (qc) происходит сильное изменение свойств, а стабилизация затягивается на 100 калибров.

В одноатомных газах . В двухатомных газах

Влияние свободной конвекции на теплообмен

Свободная конвекция возникает под действием градиента плотности, поверхностного натяжение и состава. Как было получено ранее , поэтому выделяют 3 возможных случая.

–инерционный-вязкостный режим теплообмена. В этом режиме свободной конвекции почти нету

–вязкостно-гравитационно-инерционный режим теплообмена. (Дальше рассматривается этот режим)

–вязкостно-гравитационный режим теплообмена.

Как правило этот эффект учитывается при ламинарном течении, когда (Re<6000), также этот становится более заметным при малых (Pr).

Теоритическая исследование показывает, что при стабилизированном профили скорости в начальном термическом участке влияние свободной конвекции не существенный. При стабилизированной термического участка достаточно значительно зависит. Это влияние можно показать следующим образом.

Сонаправленная свободная и вынужденная конвекция в вертикальном канале. Это происходит, когда жидкость движется верх и происходит нагрев либо жидкость течет вниз и охлаждается. При увеличении (qc) профиль скорости меняется, на стенках растет, а в центре уменьшается, КТО увеличивается. При достаточно больших (qc) возникает (М) образный профиль устойчивость уменьшается, вплоть до того что может возникнуть обратное течение. Турбулентная течение КТО уменьшается из-за уменьшение турбулентности системы. При отсутствии массовых сил эта картина не меняется.

Встречная свободная и вынужденная конвекция в вертикальном канале. Это происходит, когда жидкость движется верх и охлаждается либо жидкость течет вниз и нагревается. При увеличении (qc) профиль скорости меняется, на стенках уменьшается, а в центре увеличивается, КТО уменьшается. При этом устойчивость течение очень быстро уменьшается при увеличении , как правило в экспериментах переход в турбулентное течение происходит при (Re=350). Турбулентная течение КТО увеличивается.

Свободная конвекция в горизонтальных трубах. При нагреве в плоскости трубы возникают 2 винтовых течение. Происходит следующее, в нижней части трубы скорость на стенки увеличивается как КТО, верхней части трубы наоборот скорость уменьшается и КТО. Возникают проблемы в определении КТО потому что он может быть в некоторых местах отрицательным либо бесконечным большим.

Влияние погоды на теплообмен

Температура. Различные авторы называют различную величину температуры, которую следует поддерживать в помещении. По температурным показателям Хлопина, Эрисмана и др. эта величина в среднем равняется 15—20°.

Частые и резкие колебания температуры неблагоприятны для здоровья человека, так как они нарушают способность человека приспосабливаться к окружающей среде, нарушают нормальный тепловой баланс организма.
При повышении температуры воздуха повышается и температура кожи. Величина этого повышения при увеличении температуры воздуха постепенно уменьшается.

Влияние температуры воздуха на организм непосредственно зависит от сочетания этой температуры с относительной влажностью и движением воздуха.
Ветер. Атмосферный воздух редко бывает совершенно спокойным. Скорость ветра принято измерять числом метров в секунду или в баллах шкалы Бофорта.

Ветер вызывает на открытых частях тела раздражения рецепторов, как бы массирует кожу своими толчкообразными импульсами, создавая в ней колебания температуры и игру сосудов. Помимо изменений в теплоотдаче и образования ряда компенсаторных реакций, ветер оказывает влияние на циркуляцию крови, кровяное давление, на аппарат дыхания, на психику. Однообразно дующий ветер быстрее утомляет. Тяжело действует при передвижении человека встречный ветер. Он затрудняет не только движение, но и дыхание, заставляя напрягать всю вспомогательную мускулатуру,

теплообмен

Ветер действует довольно сильно па человеческое тело прежде всего своей силой и скоростью. При отсутствии ветра воздух оказывает сопротивление человеческому телу только при быстром передвижении самого человека.

Сопротивление воздуха, оказываемое человеку при ветре, прямопропорционально квадрату скорости ветра и той поверхности тела, на которую он воздействует. Зная величину поверхности тела среднего человека (приблизительно 0,76 кв. м), подвергающегося действию ветра, и скорость ветра, каждый спортсмен может вычислить сопротивление, оказываемое ветром человеческому телу.

При сильном урагане со скоростью в 40 м давление воздуха на человеческое тело достигает 95 кг, и взрослый человек при этом может быть поднят на воздух (Соколов).
Приведенная нами таблица наглядно показывает, что давление воздуха на человеческое тело даже при легком ветре в 2—3,5 м в секунду достигает 0,25—0,6 кг, а при крепком ветре в 8—10,5 м доходит до 4,6 кг.

Ветер рефлекторно усиливает процессы теплообразования, повышая обмен веществ. Теплообразование увеличивается по мере понижения температуры и увеличения скорости ветра.

При наличии высокой температуры и высокой влажности ветер является главным фактором, способствующим теплорегуляции организма. Отмечено, что понижение температуры кожи начинается даже при самом незначительном движении воздуха, равном 0,03 м/сек.

Погода. Факторы, влияющие на нее

Солнечное излучение, температура, влажность, направление и скорость движения воздуха, атмосферное давление и другие метеорологические факторы постоянно изменяются и оказывают в той или иной степени выраженное воздействие на все живое.

Количественные значения и совокупность метеофакторов и атмосферных явлений, находящихся в тесной взаимосвязи друг с другом в данной точке земной поверхности в данное время, называется погодой.

На характер погоды оказывают влияние облачность, наличие туманов и осадков, от которых зависит длительность инсоляции территории, электрическое состояние воздуха и др.

Несмотря на непрерывно изменяющееся состояние погоды, выраженность отдельных ее компонентов характеризуется определенной периодичностью (суточный, сезонный и годовой ход).

Наиболее выраженные и резкие изменения погоды наблюдаются при прохождении переходных зон между воздушными массами с разными физическими свойствами, так называемых атмосферных фронтов (рисунок 5.1).

Рисунок 5.1. Теплый (а) и холодный (б) фронт по С.П. Хромову (1968):

белые стрелки – движение теплого воздуха, темные – холодного воздуха

От характера и интенсивности солнечной радиации зависит режим циркуляции воздушных масс. Неодинаково нагретые над поверхностью суши и океана воздушные массы образуют и разрушают циклоны и антициклоны.

Циклон(греч. κυκλоν – кружащийся, вращающийся) – это атмосферное возмущение с пониженным давлением в центре и вихревым движением воздуха. Он характеризуется неустойчивой ненастной ветреной погодой с осадками, перепадами уровней давления, температуры и высокой электропроводностью воздуха.

Антициклон – это область повышенного атмосферного давления воздуха с максимумом в центре. Антициклон отличается, как правило, устойчивым характером, сухой, ясной или малооблачной погодой, жарким летом и морозной зимой, отсутствием осадков и ветров (рисунок 5.2).

Рисунок 5.2. Схемы циклона (1) и антициклона (2)

Влияние погоды на теплообмен и функциональное состояние

Организма человека

Погода оказывает влияние на теплообмен организма с окружающей средой.

Жаркая безветренная погода в сочетании с высокой влажностью воздуха препятствует теплоотдаче, вызывает напряжение терморегуляторных механизмов и может привести к перегреву вплоть до теплового удара (тепловой удар, - острое заболевание, обусловленное расстройствами терморегуляции при длительном воздействии на организм высокой температуры внешней среды ; возможен смертельный исход).. Жаркая погода способствует росту кишечных инфекций и пищевых отравлений микробного происхождения.

Сочетание низкой температуры, высокой влажности и подвижности воздуха способствует переохлаждению и приводит к росту простудных заболеваний, заболеваний периферической нервной системы воспалительного характера, а также отморожениям.

Резкие изменения погоды при прохождении атмосферных фронтов (во время циклонов, бурь, проливных дождей, метелей и т.д.) обычно не отражаются на состоянии здоровья и работоспособности здоровых людей. Но они могут негативно отражаться на состоянии здоровья лиц со сниженной иммунобиологической резистентностью и метеочувствительных людей, вызывая у них различные болезненные проявления, называемые гелиометеотропными реакциями. Они не имеют четкого симптомокомплекса и проявляются чувством тревоги, ухудшением общего самочувствия, снижением работоспособности, быстрой утомляемостью, нарушением сна, головными болями, головокружением, болями в мышцах, суставах. Отмечаются колебания артериального давления, боли в области сердца, послеоперационных рубцов, так называемые фантомные боли (боли в области ампутированной конечности), их интенсивность может нарушать работоспособность человека.

Значительным нагрузкам на разные функциональные системы подвергается организм человека во время погодных аномалий (суровые зимы, наводнения, засухи).

Г.М. Данишевский рассматривает эти реакции как клинические синдромы дезадаптации, то есть метеоневрозы дезадаптационного происхождения. Подтверждением служит отрицательное влияние неблагоприятной погоды на течение заболеваний сердечно-сосудистой, дыхательной, нервной и пищеварительной систем, кожных и глазных болезней, а также рост травматизма, числа автокатастроф, случаев убийств и суицидов.



Клинические типы погоды

Клинические наблюдения за состоянием здоровья людей при разных погодных условиях позволили сформулировать понятие о типах погод и разработать их медицинскую классификацию (таблица 5.1), объединяющую 15 классов безморозных и морозных вариантов погоды.

Размещено на реф.рф
СИЗ применяют тогда когда СКЗ не обеспечивают требуемую безопасность.

Метеорологические факторы производственной и непроизводственной среды. Источники загрязнения воздуха.

2.1. Климат помещений, его параметры. Теплообмен организма человека со средой обитания.

2.2. Гигиеническое нормирование параметров микроклимата производственных помещений.

2.3. Классификация ВОЯВ.

2.4. Пути проникновения вредных веществ в организм человека

2.5 .Контроль качества воздушной среды

2.6. Вентиляционные системы как средство нормализации параметров воздушной среды

Большую часть своей жизни человек проводит в помещении: дома, на работе, в транспорте. Его здоровье, самочувствие, работоспособность в значительной мере определяются состоянием теплового комфорта помещения. Требования теплового комфорта являются определяющими при выборе ограждающих конструкций зданий, систем отопления, вентиляции, кондиционирования воздуха.

Микроклимат помещений - ϶ᴛᴏ климат внутренней среды, определяемый действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха, а также температуры окружающих поверхностей.

Повышенная температура воздуха способствует быстрому утомлению работающих, снижению скорости реакций. Низкая температура может привести к простудным заболеваниям. Общее переохлаждение организма приводит к снижению уровня обмена веществ, недостатку снабжения тканей кислородом, отморожению.

Для защиты от переохлаждений открытые участки тела (уши, кисти рук, лицо) снабжены разветвленной сетью артерий и вен, по которым могут протекать большие массы теплой крови. При резком охлаждении частей тела со стороны ЦНС подается команда на усиление кровенаполнения на переохлажденных местах.

Движение воздуха в среде обитания при низких температурах и особенно при повышенной влажности оказывает существенное влияние на процесс терморегуляции организма, приводит к охлаждениям, простудным заболеваниям. Человек воспринимает движение воздуха при скорости около 0,25 м/с; скорость движения воздуха менее 0,1 м/с ощущается человеком как застой.

В случае, когда физическая терморегуляция исчерпывает свои возможности, включается механизм химической терморегуляции, проявляющейся в виде неприятных мышечных сокращений (дрожание). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, подается команда мышцам на увеличение теплообразования.

При высоких температурах повышение скорости движения воздуха оказывает благоприятное действие, способствуя быстрейшему отводу тепла и влаги конвективным путем.

При оценке влажности используется относительная величина, выраженная в процентах, т. е. отношение содержания водяных паров в единице объёма данного воздуха к содержанию паров в условиях полного насыщения воздуха при данной температуре.

Влажность φ (%) оказывает особенное влияние на организм человека в сочетании с температурой. При повышенной влажности происходит интенсивный процесс перегрева организма за счёт сокращения отвода тепла от организма потовыделœением (испарением).

Пониженная влажность при высоких температурах способствует отводу тепла потовыделœением, в связи с этим жара легче переносится в тех местах, где воздух более сухой. Повышенная влажность и пониженная температура оказывают значительное охлаждающее действие.

Физиологические наблюдения за организмом позволили определить ʼʼэффективныеʼʼ и ʼʼэффективно-эквивалентныеʼʼ температуры, характеризующие совокупное воздействие температуры, влажности, скорости движения воздуха на организм людей [9].

Субъективная оценка микроклимата человеком связана со многими факторами. Главный из них – соотношение тепла, вырабатываемого человеком, и тепла, отводимого от тела, благодаря чему организм человека постоянно находится в состоянии теплового обмена с окружающей средой.

Теплообмен - ϶ᴛᴏ совокупность процессов теплообразования (теплопродукции) и теплопотерь (теплоотдача) человеческого тела.

В комфортных условиях теплоотдача равна теплообразованию, а температура тела сохраняется постоянной без напряжения тепло-регуляционной системы.

Теплопродукция человеческого тела, в основном, зависит от рода деятельности, в некоторой степени связана с возрастом и полом человека, но с технической точки зрения неуправляема. В организме человека протекают метаболические процессы, в ходе которых энергия освобождается в виде тепла и полезной работы мышц. Величину производимой энергии определяют по количеству потребляемого кислорода.

Метаболизм (обмен веществ) - ϶ᴛᴏ совокупность процессов, связанных с поглощением, хранением и выделœением продуктов жизнедеятельности организма.

Передача тепла во внешнюю среду с поверхности тела происходит путем конвекции, теплового излучения, теплопроводности, испарения.

Конвекция - ϶ᴛᴏ процесс непосредственной отдачи тепла открытыми поверхностями тела воздуху окружающей зоны. Понижение температуры и подвижность воздуха ускоряют процесс конвекции.

Тепловое излучение - ϶ᴛᴏ отдача тепла от поверхности тела в направлении поверхностей, имеющих более низкую температуру.

Теплопроводность - ϶ᴛᴏ отдача тепла при соприкосновении поверхности тела с охлажденными или нагретыми частями оборудования.

Испарение – основной путь отдачи тепла организмом при повышенной температуре, особенно в тех случаях, когда температура тела человека близка температуре окружающей среды. Это отвод из организма ненужного ему тепла. При потовыделœении вместе с водой из организма удаляются соли, витамины С и Д, сгущается кровь, повышается количество гемоглобина, содержание сахара и кальция, понижается кислотность желудочного сока, усиливается расход углеводородов и распад белков. Обильное потовыделœение может привести к нарушению водного и солевого баланса в организме.

Теплоотдача человеческого тела в большей степени зависит от одежды, а также от совместного влияния температуры, относительной влажности, скорости движения воздуха, среды обитания.

Климат помещений, его параметры. Теплообмен организма человека со средой обитания - понятие и виды. Классификация и особенности категории "Климат помещений, его параметры. Теплообмен организма человека со средой обитания" 2017, 2018.

Как влияют метеорологические условия на теплообмен человека. Влияние на организм человека метеорологических условий

В статье рассматривается микроклимат производственных помещений, влияние метеорологических условий на организм человека, мероприятия по обеспечению нормированного микроклимата производственных помещений, даны рекомендации по профилактике перегревов и переохлаждений.

Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологические условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые - сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних - от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарно - технических устройств.

Микроклимат производственных помещений

Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года - от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.
Согласно гигиеническим требованиям к проектированию вновь строящихся и реконструируемых промышленных предприятий (СП 2.2.1.1312-03) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м 3 ч, и горячие цехи, где они выше этой величины.
Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.
Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.
Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500 o С спектр излучения содержит как видимые - световые лучи, так и невидимые - инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.
Источники тепла, имеющие температуру 2500 - 3000 o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.
Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.
Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 - 95 % инфракрасных лучей, а поглощают всего 5 - 6 %. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 - 96 % этих лучей, поэтому нагреваются более интенсивно.

Влияние метеорологических условий на организм

Человек может переносить колебания температур воздуха в весьма широких пределах от - 40 - 50 o и ниже до +100 o и выше. Организм человека приспосабливается к столь широкому диапазону колебаний температур окружающей среды посредством регулирования теплопродукции и теплоотдачи человеческого организма. Этот процесс называется терморегуляцией.
В результате нормальной жизнедеятельности организма в нем постоянно происходит образование тепла и его отдача, то есть теплообмен. Тепло образуется вследствие окислительных процессов, из которых две трети падает на окислительные процессы в мышцах. Отдача тепла идет тремя путями: конвекцией, радиацией и испарением пота. В нормальных метеорологических условиях окружающей среды (температура воздуха около 20 o С) конвекцией отдается около 30 %, радиацией - около 45 % и испарением пота - около 25 % тепла.
При низких температурах окружающей среды в организме усиливаются окислительные процессы, увеличивается внутренняя теплопродукция, за счет чего и сохраняется постоянная температура тела. На холоде люди стараются больше двигаться или работать, так как работа мышц ведет к усилению окислительных процессов и увеличению теплопродукции. Дрожь, появляющаяся при длительном нахождении человека на холоде, есть не что иное, как мелкие подергивания мышц, что также сопровождается усилением окислительных процессов и, следовательно, повышением теплопродукции.
В условиях горячих цехов более важное значение имеет отдача тепла организмом. Увеличение теплоотдачи всегда связано с увеличением кровенаполнения периферических кожных сосудов. Об этом свидетельствует покраснение кожных покровов при воздействии на человека повышенной температуры или инфракрасной радиации. Кровенаполнение поверхностных сосудов ведет к повышению температуры кожных покровов, что способствует более интенсивной отдаче тепла в окружающее пространство конвекционным и радиационным путем. Приток крови к кожным покровам активизирует деятельность расположенных в подкожной клетчатке потовых желез, что ведет к увеличению потовыделения и, следовательно, к более интенсивному охлаждению организма. Великий русский ученый И. П. Павлов и его ученики рядом экспериментальных работ доказали, что в основе этих явлений лежат сложные рефлекторные реакции при непосредственном участии центральной нервной системы.
В горячих цехах, где температура окружающего воздуха может достигать высоких величин, где имеется интенсивное инфракрасное излучение, терморегуляция организма осуществляется несколько иначе. Если температура окружающего воздуха равна или выше температуры кожного покрова (32 - 34 o С), человек лишен возможности отдавать избытки тепла конвекционным путем. При наличии нагретых предметов и других поверхностей в цехе, особенно при инфракрасном излучении, весьма затруднен и второй путь теплообмена - радиация. Таким образом, в этих условиях терморегуляция крайне затруднена, так как основная нагрузка падает на третий путь - теплоотдачи испарением пота. В условиях повышенной влажности, наоборот, затруднен третий путь теплоотдачи - испарением пота -и отдача тепла происходит конвекцией и радиацией. Наиболее тяжелые условия терморегуляции создаются при сочетании высокой температуры окружающей среды и повышенной влажности воздуха.
Несмотря на то, что организм человека благодаря терморегуляции может приспосабливаться к весьма широкому диапазону колебаний температур, нормальное физиологическое состояние его сохраняется лишь до определенного уровня. Верхняя граница нормальной терморегуляции в полном покое лежит в пределах 38 - 40 o С при относительной влажности воздуха около 30 %. При физической нагрузке или повышенной влажности воздуха этот предел снижается.
Терморегуляция в неблагоприятных метеорологических условиях, как правило, сопровождается напряжением определенных органов и систем, что выражается в изменении их физиологических функций. В частности, при действии высоких температур отмечается повышение температуры тела, что свидетельствует о некотором нарушении терморегуляции. Степень повышения температуры, как правило, зависит от температуры окружающего воздуха и от продолжительности его воздействия на организм. Во время физической работы в условиях высоких температур температура тела увеличивается больше, чем при аналогичных условиях в покое.
Действие высоких температур почти всегда сопровождается повышенным потоотделением. В неблагоприятных метеорологических условиях рефлекторное потоотделение часто достигает таких размеров, что пот не успевает испаряться с поверхности кожи. В этих случаях дальнейшее увеличение потоотделения ведет не к увеличению охлаждения организма, а к сокращению его, так как водяной слой препятствует снятию тепла непосредственно с кожного покрова. Такое профузное потоотделение называют неэффективным.
Величина потоотделения у рабочих горячих цехов достигает 3 - 5 л за смену, а при более неблагоприятных условиях она может достигать 8 - 9 л за смену. Обильное потение ведет к значительной потере влаги организмом.
Высокая температура окружающего воздуха оказывает большое влияние на сердечно - сосудистую систему. Повышение температуры воздуха выше определенных пределов дает учащение пульса. Установлено, что учащение пульса начинается одновременно с повышением температуры тела, то есть с нарушением терморегуляции. Эта зависимость дает возможность по учащению пульса судить о состоянии терморегуляции при условии отсутствия прочих факторов, оказывающих влияние на частоту сердечных сокращений (физическое напряжение и пр.).
Воздействие на организм высокой температуры вызывает понижение кровяного давления. Это результат перераспределения крови в организме, где происходит отток крови от внутренних органов и глубоких тканей и переполнение периферических, то есть кожных, сосудов.
Под влиянием высокой температуры изменяется химический состав крови, увеличивается удельный вес, остаточный азот, уменьшается содержание хлоридов и углекислоты и т. д. Особое значение в изменении химического состава крови имеют хлориды. При чрезмерном потении в условиях высоких температур хлориды выводятся из организма вместе с потом, вследствие чего нарушается водно-солевой обмен. Значительные нарушения водно-солевого обмена могут привести к так называемой судорожной болезни.
Высокая температура воздуха неблагоприятно действует на функции органов пищеварения и на витаминный обмен.
Таким образом, высокая температура воздуха (выше допустимого предела) оказывает неблагоприятное влияние на жизненно важные органы и системы человека (сердечно-сосудистую, центральную нервную систему, пищеварительную), вызывая нарушения нормальной их деятельности, а при наиболее неблагоприятных условиях может вызвать серьезные заболевания в виде перегревания организма, называемые в быту тепловыми ударами.

Пути обеспечения нормального микроклимата производственных помещений,
профилактика перегревов и переохлаждений

Метеорологические условия в рабочих помещениях нормируются по трем основным показателям: температуре, относительной влажности и подвижности воздуха. Эти показатели различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.
Мероприятия по обеспечению нормальных метеорологических условий на производстве, как и многие другие, носят комплексный характер. Существенную роль в этом комплексе играют архитектурно - планировочное решения производственного здания, рациональное построение технологического процесса и правильное использование технологического оборудования, применение ряда санитарно-технических устройств и приспособлений. Помимо этого, используются меры индивидуальной защиты и личной гигиены. Это радикально не улучшает метеорологических условий, но защищает рабочих от их неблагоприятного воздействия.
Оздоровление условий труда в горячих цехах
Планировка помещений горячих цехов должна обеспечивать свободный доступ свежего воздуха ко всем участкам цеха. Наиболее рациональны в гигиеническом отношении мало пролетные здания. В многопролетных зданиях средние пролеты, как правило, проветриваются хуже крайних, поэтому при проектировании горячих цехов всегда следует сокращать число пролетов до минимума. Для свободного поступления наружного, более холодного воздуха и, следовательно, для лучшего проветривания помещений весьма важно оставлять максимальное количество свободного от застроек периметра стен. Иногда пристройки сосредоточиваются в одном месте и создают неблагоприятные условия для доступа свежего воздуха на определенном участке. Во избежание этого пристройки следует размещать на небольших участках с разрывами, лучше с торцов здания и, как правило, не у горячего оборудования. Крупные пристройки, которые по технологическим или другим требованиям должны быть связаны непосредственно с горячим цехом, например бытовые, лаборатории, лучше строить отдельно и соединять лишь узким коридором.
Оборудование в горячем цехе нужно размещать таким образом, чтобы все рабочие места хорошо проветривались. Необходимо избегать параллельного размещения горячего оборудования и других источников тепловыделения, так как в этих случаях рабочие места и вся зона, расположенная между ними, плохо проветривается, свежий воздух, проходя над источниками тепловыделения, приходит на рабочее место в нагретом состоянии. Аналогичное положение создается, если горячее оборудование находится у глухой стены. С гигиенической точки зрения наиболее целесообразно располагать его вдоль наружных стен, снабженных оконными и другими проемами, с основной зоной обслуживания - рабочими местами - со. стороны этих стен. Не рекомендуется рядом с горячим оборудованием располагать рабочие места, на которых производятся холодные работы (вспомогательные, подготовительные, ремонтные и др.).
Для защиты крыши зданий от солнечной радиации и, следовательно, от передачи тепла внутрь зданий перекрытие верхнего этажа хорошо тепло изолируется. В солнечные летние дни хороший эффект дает мелкое разбрызгивание воды по всей поверхности крыши.
На летний период стекла окон, фрамуг, фонарей и других проемов целесообразно покрывать непрозрачной белой краской (мелом). Если оконные проемы открываются для проветривания, их следует зашторивать белой редкой тканью. Наиболее рационально в открытых оконных проемах оборудовать жалюзи, которые пропускают рассеянный свет и воздух, но преграждают путь прямым солнечным лучам. Подобные жалюзи изготовляются из полосок непрозрачной пластмассы или тонкой листовой жести, окрашенных в светлые тона. Длина полосок - во всю ширину окна, ширина - 4 - 5 см. Полоски укрепляются под углом 45 o с интервалом, равным ширине полоски, горизонтально по всей высоте окна.
Для охлаждения воздуха, поступающего в цех в теплый период года, целесообразно производить мелкое распыление воды при помощи специальных форсунок в открытых въездных и оконных проемах, в приточных венткамерах и вообще в верхней зоне цеха, если это не мешает нормальному технологическому процессу. Полезно также периодически опрыскивать пол цеха водой.
Чтобы предупредить сквозняки в зимний период, все въездные и другие часто открывающиеся проемы оборудуются тамбурами или воздушными завесами. Чтобы холодные потоки воздуха не попадали непосредственно на рабочие места, последние в холодный период года целесообразно экранировать со стороны открывающихся проемов щитами на высоту около 2 м.
Существенную роль в оздоровлении условий труда играют механизация и автоматизация технологических процессов. Эта позволяет удалить рабочее место от источников тепловыделений, а нередко и значительно сократить их воздействие. Рабочие освобождаются от тяжелой физической работы.
При механизации и автоматизации процессов появляются новые виды профессий: машинисты и операторы Труд их характеризуется значительным нервным напряжением. Для этих рабочих необходимо создать наиболее благоприятные условия труда, так как сочетание нервного напряжения с неблагоприятным микроклиматом особенно вредно.
Мероприятия по борьбе с избытками тепла направляются на максимальное сокращение их выделения, так как легче предупредить избытки тепла, чем удалить их из цеха. Наиболее эффективным способом борьбы с ними является изоляция источников тепловыделений. Санитарными нормами установлено, что температура наружных поверхностей источников тепловыделений в зоне расположения рабочих мест не должна превышать 45 o С, а прй температуре внутри них менее 100 o С - не более 35 o С. Если добиться этого путем теплоизоляции невозможно, рекомендуется экранировать эти поверхности и применять другие санитарно-технические меры.
Учитывая, что инфракрасная радиация действует не только на рабочих, а нагревает все окружающие предметы и ограждения и создает тем самым весьма значительные источники вторичного выделения тепла, целесообразно горячее оборудование и источники инфракрасного излучения экранировать не только на участках размещения рабочих мест, а по возможности по всему периметру.
Для изоляции источников тепла применяются обычные термоизоляционные материалы, обладающие низкой теплопроводностью. К ним относятся пористый кирпич, асбест, специальные глины с примесью, асбеста и т. п. Лучший гигиенический эффект дает водяное охлаждение наружных поверхностей горячего оборудования. Оно применяется в виде водяных рубашек или системы труб, покрывающих снаружи горячие поверхности. Вода, циркулирующая по системе труб, отбирает тепло с горячей поверхности и не допускает выделения его в помещение цеха. Для экранирования примеряются щиты высотой не менее 2 м, поставленные параллельно горячей поверхности на небольшом расстоянии от нее (5 - 10 см). Подобные щиты препятствуют распространению конвекционных токов нагретого воздуха от горячей поверхности в окружающее пространство. Конвекционные токи направляются вверх по щели, образованной горячей поверхностью и щитом, и нагретый воздух, минуя рабочую зону, уходит наружу через аэрационные фонари и другие проемы. Для удаления тепловыделений от небольших источников тепла или от локализованных (ограниченных) мест его выделения можно использовать местные укрытия (зонты, кожухи) с механическим или естественным отсосом.
Описанные мероприятия не только снижают тепловыделения конвекционным путем, они приводят также к снижению интенсивности инфракрасного излучения.
Для защиты рабочих от инфракрасного облучения применяется ряд специальных устройств и приспособлений. Большинство из них представляет собой экраны различной конструкции, которые защищают рабочего от прямого облучения. Они устанавливаются между рабочим местом и источником излучения. Экраны могут быть стационарными и переносными.
В тех случаях, когда рабочий не должен наблюдать за горячим оборудованием или другим источником излучения (слитком, прокатом и т. п.), экраны делаются из непрозрачного материала (асбофанеры, жести). Во избежание нагрева под действием инфракрасных лучей целесообразно их поверхность, обращенную к источнику излучения, покрывать полированной жестью, алюминием или оклеить алюминиевой фольгой. Экраны из жести, как и щиты у нагретых поверхностей, делаются двух или (лучше) трехслойными с воздушной прослойкой между каждым слоем в 2 - 3 см.
Наиболее эффективны экраны с водяным охлаждением. Они состоят из двух металлических стенок, соединенных между собой герметично по всему периметру; между стенками циркулирует холодная вода, подаваемая из водопровода специальной трубкой и стекающая с противоположного края экрана по выпускной трубе в канализацию. Такие экраны, как правило, полностью снимают инфракрасное облучение.
Если обслуживающий персонал должен наблюдать за работой оборудования, механизмов или за ходом процесса, используются прозрачные экраны. Простейшим экраном данного типа может служить обычная мелкая металлическая сетка (сечение ячейки 2 - 3 мм), которая сохраняет видимость и снижает интенсивность облучения в 2 - 2,5 раза.
Более эффективны водяные завесы: они снимают инфракрасную радиацию почти полностью. Водяная завеса представляет собой тонкую водяную пленку, которая образуется при равномерном стекании воды с гладкой горизонтальной поверхности. С боков водяная пленка ограничивается рамкой, а снизу вода собирается в приемный желоб и специальным стоком отводится в канализацию. Подобная водяная завеса абсолютно прозрачна. Однако оборудование ее требует особой точности выполнения всех элементов и их наладки. Эти условия не всегда выполняются, в силу чего может нарушаться работа завесы (пленка “рвется”).
Более проста в изготовлении и эксплуатации водяная завеса с сеткой. Вода стекает по металлической сетке, поэтому водяная пленка более прочная. Однако эта завеса несколько снижает видимость, поэтому она может применяться лишь в тех случаях, когда не требуется особо точного наблюдения. Загрязнение сетки ведет к еще большему ухудшению видимости. Особенно неблагоприятно, сказывается загрязнение сетки смазочными и другими маслами. В этих случаях сетка не смачивается водой, и пленка начинает “рваться”, рябить, ухудшается видимость и проходит часть инфракрасных лучей. Поэтому сетку этой водяной завесы следует содержать в чистоте, периодически промывать горячей водой с мылом и щеткой. В Киевском институте гигиены труда и профзаболеваний разработан аквариальный экран, предназначенный для защиты от облучения рабочих, находящихся в замкнутых пространствах: за пультом управления, в кабинах кранов и т. п. Эти экраны построены по тому же принципу, что и описанные выше непрозрачные экраны с водяным охлаждением, но боковые стенки в данном случае изготовлены не из металла, а из стекла. Для того чтобы на внутренней части стекол не оседали соли и тем самым не нарушали видимости, внутри экрана должна циркулировать дистиллированная вода. Эти экраны полностью сохраняют прозрачность, однако они требуют весьма аккуратного обращения, так как малейшее повреждение может вывести их из строя (бой стекол и вытекание воды).
Для снятия тепла и конвекционного и лучистого, воздействующего на рабочего, в горячих цехах широко применяется воздушное душирование, начиная от настольного вентилятора и кончая мощными промышленными аэраторами и приточными вентиляционными системами с подачей воздуха непосредственно на рабочее место. Для этой цели используются как простые, так и аэраторы с распылением воды, повышающей охлаждающий эффект за счет ее испарения.
Рациональное оборудование мест отдыха играет важную роль. Они располагаются вблизи основных рабочих мест, чтобы рабочие могли пользоваться ими даже при кратковременных перерывах. В то же время места отдыха должны быть удалены от горячего оборудования и других источников выделения тепла. Если удалить их невозможно, необходимо тщательно изолировать от влияния конвекционного тепла, инфракрасного излучения и других неблагоприятных факторов. Места отдыха оборудуются удобными скамейками со спинками. В теплый период года туда следует подавать свежий охлажденный воздух. Для этого оборудуется местная приточная вентиляция или устанавливаются аэраторы с водяным охлаждением. Крайне желательно на местах отдыха установить полудуши для принятия гидропроцедур и приблизить будку с подсоленной газированной водой или доставлять воду на места отдыха в специальных баллонах.
Еще институтом гигиены труда и профзаболеваний АМН СССР был разработан ряд способов радиационного охлаждения. Простейшие полузакрытые кабины радиационного охлаждения состоят из двойных металлических стен и крыши. В пространстве между двумя слоями стен циркулирует холодная артезианская вода и охлаждает их поверхность. Кабины делаются небольших размеров, внутренний размер их равен 85 x 85 см, высота - 180 - 190 см. Небольшие габариты кабины позволяют установить ее на большинстве стационарных рабочих мест.
По такому же принципу выполнена конструкция кабины отдыха- типа водяной завесы. Она изготовлена из металлической сетки, по которой стекает вода в виде сплошной водяной пленки. Эта кабина удобна тем, что рабочий, находясь в ней, может наблюдать за технологическим процессом, работой оборудования и т. п.
Более сложным устройством является специально оборудованная комната для группового отдыха. Размер ее может достигать 15 - 20 м 2 . Панели стен на высоту 2 м покрыты системой трубопроводов, по которым от компрессора подается аммиачный раствор или другой хладагент, снижающий температуру поверхности труб. Наличие большой холодной поверхности в такой комнате обеспечивает весьма ощутимую отрицательную радиацию и охлаждение воздуха.

Теги: Охрана труда, работник, микроклимат производственных помещений, влияние метеорологических условий, организм человека, мероприятия по обеспечению нормированного микроклимата, профилактика перегревов и переохлаждений

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Микроклимат или метеорологические условия - это совокупность температуры, влажности, скорости движения воздуха, теплового излучения окружающих предметов.

Роль микроклимата в жизнедеятельности человека предопределяется тем, что последняя может нормально протекать лишь при условии сохранения температурного гомеостаза, который достигается за счет деятельности различных систем организма (сердечно-сосудистой, дыхательной, выделительной, эндокринной; энергетического, водно-солевого и белкового обменов). Напряжение в функционировании различных систем при воздействии неблагоприятного микроклимата (нагревающего или охлаждающего) может быть причиной угнетения защитных сил организма, возникновения предпатологических состояний, усугубляющих степень влияния и других производственных вредностей (например, вибрации, химических веществ и других), снижения работоспособности и производительности труда, повышения уровня заболеваемости.

С нагревающим микроклиматом человек сталкивается при работе в горячих цехах различных отраслей промышленности (металлургической, стекольной, пищевой и др.), в глубоких шахтах, а также при работе на открытом воздухе в летний период (южные регионы).

При работе в жарком климате (температура воздуха в тени 35-45 "С, почвы 58-60 °С) происходит ослабление деятельности сердечно-сосудистой системы. Снижение работоспособности наблюдается уже при температуре воздуха 25-30 "С.

Работоспособность человека, выполняющего тяжелую физическую работу, уже при температуре воздуха 25°С и влажности 35±5% уменьшается на 16,5%, а при влажности воздуха 80 % - на 24%. Тепловое облучение 350 Вт/м 2 (0,5 кал/ см 2 мин) создает дополнительную нагрузку на различные функциональные системы организма, в результате него (при температуре

воздуха 25 "С и влажности 35%) работоспособность уменьшается на 27%. При температуре воздуха 29,5±2,5 °С и влажности 60% уже к концу первого часа работы снижение работоспособности.

С охлаждающим микроклиматом человек сталкивается при работе на открытом воздухе в зимний и переходным периоды (нефтяники, строители, рабочие горнорудной и угольной промышленности, рабочие железнодорожного транспорта, геологи и др.), а также в производственных помещениях, в которых имеет место низкая температура воздуха, например в хладокомбинатах.

Человеческое тело обладает уникальной способностью поддерживать

постоянную температуру тела независимо от температуры окружающей среды.

Однако биологические возможности человека в сохранении постоянной температуры тела весьма ограничены, они основаны на теплообменных процессах, постоянно протекающих между телом человека и окружающей средой.

Теплообменные процессы между человеком и окружающей средой осуществляются тремя путями тепловым излучением, конвекцией и испарением. Доля их в общем теплообмене при нормальных условиях

составляет 45%, 30-35%, 20-25% соотвествтвенно. Испарение у человека осуществляется двумя путями, больший часть тепла удаляется через механизм потоотделения и потоиспарения, меньшая в процессе дыхания. Процентное соотношение этих путей теплообмена может изменится под воздействием метеорологических условий Так с понижением температуры окружающего воздуха значение испарения для теплообмена снижается и растет доля конвекции. А с ростом температуры воздуха значение теплового излучения и

конвекции падает и растет значение испарении, так, что когда температура окружающей среды равна температуре человеческоготела, теплообмен происходит исключительно за счет испарении.

При охлаждении организма теплоотдача растет. Ее уменьшение достигается за счет сужения сосудов в периферических тканях. Если этого недостаточно для обеспечения теплового равновесия, то увеличивается теплообразование. Но возможности организма человека по поддержанию теплового равновесия ограниченны, и охлаждающее действие внешней среды может приводить к переохлаждению. При этом понижается общая сопротивляемость организма к развитию заболеваний, возникают сосудистые расстройства, заболевания суставов. Процесс понижения температуры тела под воздействием микроклимата называется гипотермией.

При повышении температуры окружающей среды теплоотдача организма снижается или даже полностью прекращается. Это нарушает терморегуляцию, ведет к перегреву. Сильный перегрев организма называется тепловым ударом и сопровождается учащением пульса, расстройством координации движений, адинамией, угнетением центральной нервной системы и даже потерей сознания. Процесс повышения температуры тела человека называется гипертермией. Высокие температуры оказывают отрицательное воздействие на здоровье человека. Работа в условиях высокой температуры сопровождается интенсивным потоотделением, что приводит к обезвоживанию организма, потере минеральных солей и водорастворимых витаминов, вызывает серьезные и стойкие изменения в деятельности сердечно-сосудистой системы, увеличивает частоту дыхания, а также оказывает влияние на функционирование других органов и систем - ослабляется внимание, ухудшается координация движений, замедляются реакции и т.д.

Следует иметь в виду, что действие климатических условий определяется совокупностью конкретных значений температуры, влажности, скорости движения воздуха.

Температура в производственных помещениях является одним из ведущих факторов, определяющих метеорологические условия производственной среды.

Влажность - содержание водяных паров в воздухе. Влияет на работоспособность человека, изменяя тепловой баланс организма: низкая влажность (менее 30 %) приводит к потере жидкости и минеральных веществ через кожу и слизистые, а высокая (более 60 %) - к избыточному потовыделению (для предупреждения перегревания), но низкому потоиспарению. Следовательно, подобные условия затрудняют мышечную деятельность человека, создают дополнительную нагрузку на адаптационные системы организма, снижают работоспособность и, значит, требуют уменьшения объема и интенсивности физической нагрузки. Разновидности влажности воздуха: максимальная, абсолютная, относительная- Абсолютная влажность воздуха - это количество водяного пара в определенном объеме воздуха, мг/м 3 . Максимальная влажность воздуха - это максимально возможное содержание водяного пара в определенном объеме воздуха при данной температуре, если концентрация влаги в воздухе достигает максимальной и продолжает расти, начинаются процессы конденсации воды на т.н. ядрах конденсации, ионах или мелких пылевых частицах и образуется туман или выпадает роса. Относительная влажность - это отношение абсолютной влажности воздуха к максимальной, выраженное в процентах.

Для работоспособности человека большое значение имеют не только температура, влажность, но и скорость, и направление движения воздуха, которые воздействуют как на температурный баланс организма, так и на его психологическое состояние (сильные по скорости потоки (более 6-7 м/с) раздражают, слабые - успокаивают), на частоту и глубину дыхания, частоту пульса, на скорость передвижения человека. В условиях высоких температур и нормальной влажности повышенные скорости движения воздуха вызывают рост испарения с поверхностей тела, тем самым улучшая теплообмен, В условиях низких температур значительные скорости движения воздуха резко ухудшают тепловое состояние человека, сильно интенсифицируя теплообмен.

Тепловое излучение (инфракрасное излучение) представляет собой невидимое электромагнитное излучение с длиной волны от 0,76 до 540 нм, обладающее волновыми, квантовыми свойствами. Интенсивность теплоизлучения измеряется в Вт/м 2 . Инфракрасные лучи, проходя через воздух, его не нагревают, но, поглотившись твердыми телами, лучистая энергия переходит в тепловую, вызывая их нагревание. Источником инфракрасного излучения является любое нагретое тело.

Действие теплового излучения на организм имеет ряд особенностей, одной из которых является способность инфракрасных лучей различной длины проникать на различную глубину и поглощаться соответствующими тканями, оказывая тепловое действие, что приводит к повышению температуры кожи, увеличению частоты пульса, изменению обмена веществ и артериального давления, заболеванию глаз.

Параметры микроклимата производственных помещений могут быть

самыми разными, так как они зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий отопления и

вентиляции. Следовательно состояние здоровья работников, находящихся

в производственных помещениях, их работоспособность зависят от состояния микроклимата в этих помещениях.

Оценку теплового состояния человека в производственных помещениях производят в соответствии с методическими рекомендациями Минздрава

№5168-90"Оценка теплового состояния человека с целью обоснования гигиенических требований к микроклимату рабочих мест и мерам профилактики

охлаждения и перегревания."

Трудовая деятельность человека всегда протекает в определенных метеорологических условиях, которые определяются сочетанием температуры воздуха, скорости его движения и относительной влажности, барометрическим давлением и тепловым излучением от нагретых поверхностей. Если труд протекает в помещении, то эти показатели в совокупности (за исключением барометрического давления) принято называть микроклиматом производственного помещения.

По определению, приведенному в ГОСТ, микроклимат производственных помещений - это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Если работа выполняется на открытых площадках, то метеорологические условия определяются климатическим поясом и сезоном года. Однако и в этом случае в рабочей зоне создается определенный микроклимат.

Все жизненные процессы в организме человека сопровождаются образованием теплоты, количество которой меняется от 4. 6 кДж/мин (в состоянии покоя) до 33. 42 кДж/мин (при очень тяжелой работе).

Параметры микроклимата могут изменяться в очень широких пределах, в то время как необходимым условием жизнедеятельности человека является сохранение постоянства температуры тела.

При благоприятных сочетаниях параметров микроклимата человек испытывает состояние теплового комфорта, что является важным условием высокой производительности труда и предупреждения заболеваний.

При отклонении метеорологических параметров от оптимальных в организме человека для поддержания постоянства температуры тела начинают происходить различные процессы, направленные на регулирование теплопродукции и теплоотдачи. Эта способность организма человека сохранять постоянство температуры тела, несмотря на значительные изменения метеорологических условий внешней среды и собственной теплопродукции, получила название терморегуляции.

При температуре воздуха в пределах от 15 до 25°С теплопродукция организма находится на приблизительно постоянном уровне (зона безразличия). По мере понижения температуры воздуха теплопродукция повышается в первую очередь за

счет мышечной активности (проявлением которой является, например, дрожь) и усиления обмена веществ. По мере повышения температуры воздуха усиливаются процессы теплоотдачи. Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением. Преобладание того или иного процесса теплоотдачи зависит от температуры окружающего воздуха и ряда других условий. При температуре около 20°С, когда человек не испытывает никаких неприятных ощущений, связанных с микроклиматом, теплоотдача конвекцией составляет 25. 30%, излучением - 45%, испарением - 20. 25%. При изменении температуры, влажности, скорости движения воздуха, характера выполняемой работы эти соотношения существенно меняются. При температуре воздуха 30°С отдача теплоты испарением становится равной суммарной отдаче теплоты излучением и конвекции. При температуре воздуха более 36°С отдача теплоты происходит уже полностью за счет испарения.

При испарении 1 г воды организм теряет около 2,5 кДж теплоты. Испарение происходит, главным образом, с поверхности кожи и в значительно меньшей степени через дыхательные пути (10. 20%).

При нормальных условиях с потом организм теряет в сутки около 0,6 л жидкости. При тяжелой физической работе при температуре воздуха более 30 °С количество теряемой организмом жидкости может достичь 10. 12 л. При интенсивном потоотделении, если пот не успевает испариться, наблюдается выделение его в виде капель. При этом влага на коже не только не способствует отдаче теплоты, а, наоборот, препятствует этому. Такое потоотделение ведет только к потере воды и солей, но не выполняет основную функцию - усиление отдачи теплоты.

Значительное отклонение микроклимата рабочей зоны от оптимального может быть причиной ряда физиологических нарушений в организме работающих, привести к резкому снижению работоспособности даже к профессиональным заболеваниям.

Перегрев.При температуре воздуха более 30°С и значительном тепловом излучении от нагретых поверхностей наступает нарушение терморегуляции организма, что может привести к перегреву организма, особенно, если потеря пота в смену приближается к 5 л. Наблюдается нарастающая слабость, головная боль, шум в ушах, искажение цветного восприятия (окраска всего в красный или зеленый цвет), тошнота, рвота, повышается температура тела. Дыхание и пульс учащаются, артериальное давление вначале возрастает, затем падает. В тяжелых случаях наступает тепловой, а при работе на открытом воздухе - солнечный удар. Возможна судорожная болезнь, являющаяся следствием нарушения водно-солевого баланса и характеризующаяся слабостью, головной болью, резкими судорогами, преимущественно в конечностях. В настоящее время в производственных условиях такие тяжелые формы перегревов практически не встречаются. При длительном воздействии теплового излучения может развиться профессиональная катаракта.

Но даже если не возникают такие болезненные состояния, перегрев организма сильно сказывается на состоянии нервной системы и работоспособности человека. Исследованиями, например, установлено, что к концу 5-часового пребывания в зоне с температурой воздуха около 31°С и влажностью 80. 90%; работоспособность снижается на 62%. Значительно снижается мышечная сила рук (на 30. 50%), уменьшается выносливость к статическому усилию, примерно в 2 раза ухудшается способность к тонкой координации движений. Производительность труда снижается пропорционально ухудшению метеорологических условий.

Длительное и сильное воздействие низких температур может вызвать различные неблагоприятные изменения в организме человека. Местное и общее охлаждение организма является причиной многих заболеваний: миозитов, невритов, радикулитов и др., а также простудных заболеваний. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к уменьшению работоспособности. В особо тяжелых случаях воздействие низких температур может привести к обморожениям и даже смерти.

Влажность воздуха определяется содержанием в нем водяных паров. Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность (А) -это масса водяных паров, содержащихся в данный момент в определенном объеме воздуха, максимальная (М) - максимально возможное содержание водяных паров в воздухе при данной температуре (состояние насыщения). Относительная влажность (В)определяется отношением абсолютной влажности Ак максимальной Ми выражается в процентах:

Физиологически оптимальной является относительная влажность в пределах 40…60%.Повышенная влажность воздуха (более 75…85%) в сочетании с низкими температурами оказывает значительное охлаждающее действие, а в сочетании с высокими - способствует перегреванию организма. Относительная влажность менее 25% также неблагоприятна для человека, так как приводит к высыханию слизистых оболочек и снижению защитной деятельности мерцательного эпителия верхних дыхательных путей.

Подвижность воздуха. Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. Легкое движение воздуха при обычных температурах способствует хорошему самочувствию, сдувая обволакивающий человека насыщенный водяными парами и перегретый слой воздуха. В то же время большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение теплопотерь конвекцией и испарением и ведет к сильному охлаждению организма. Особенно неблагоприятно действует сильное движение воздуха при работах на открытом воздухе в зимних условиях.

Человек ощущает воздействие параметров микроклимата комплексно. На этом основано введение так называемых эффективной и эффективно-эквивалентной температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха.

Эффективно-эквивалентная температура учитывает еще влажность воздуха. Номограмма для нахождения эффективно-эквивалентной температуры и зоны комфорта была построена опытным путем (рис. 7).

Тепловое излучение свойственно любым телам, температура которых выше абсолютного нуля.

Тепловое воздействие облучения на организм человека зависит от длины волны и интенсивности потока излучения, величины облучаемого участка тела, длительности облучения, угла падения лучей, вида одежды человека. Наибольшей проникающей способностью обладают красные лучи видимого спектра и короткие инфракрасные лучи с длиной волны 0,78. 1,4 мкм, которые плохо задерживаются кожей и глубоко проникают в биологические ткани, вызывая повышение их температуры, например длительное облучение такими лучами глаз- ведет к помутнению хрусталика (профессиональной катаракте). Инфракрасное излучение вызывает также в организме человека различные биохимические и функциональные изменения.

В производственных условиях встречается тепловое излучение в диапазоне длин волн от 100 нм до 500 мкм. В горячих цехах это в основном инфракрасная радиация с длиной волны до 10 мкм. Интенсивность облучения рабочих горячих цехов меняется в широких пределах: от нескольких десятых долей до 5,0. 7,0 кВт/м 2 . При интенсивности облучения более 5,0 кВт/м 2

Рис. 7. Номограмма для определения эффективной температуры и зоны комфорта

в течение 2. 5 мин человек ощущает очень сильное тепловое воздействие. Интенсивность же теплового облучения на расстоянии 1 м от источника теплоты на горновых площадках доменных печей и у мартеновских печей при открытых заслонках достигает 11,6 кВт/м 2 .

Допустимый для человека уровень интенсивности теплового облучения на рабочих местах составляет 0,35 кВт/м 2 (ГОСТ 12.4.123 - 83 «ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования»).

22. Физиологические действия метеорологических условий на человека

Метеорологические условия включают в себя физические факторы, находящиеся во взаимосвязи друг с другом: температура, влажность и скорость воздуха, атмосферное давление, количество осадков, показания геомагнитного поля Земли.

Температура воздуха влияет на теплообмен. При физической нагрузке продолжительное пребывание в сильно нагретом воздухе сопровождается повышением температуры тела, ускорением пульса, ослаблением деятельности сердечно-сосудистой системы, снижением внимания, замедлением скорости реакций, нарушением точности и координации движений, потерей аппетита, быстрой утомляемостью, понижением умственной и физической работоспособности. Низкая температура воздуха, увеличивая теплоотдачу, создает опасность переохлаждения организма, возможность простудных заболеваний. Особенно вредны для здоровья быстрые и резкие перепады температуры.

В атмосферном воздухе постоянно присутствуют водяные пары. Степень насыщения воздуха водяными парами называется влажностью. Одна и та же температура воздуха в зависимости от его влажности ощущается человеком по-разному.

К холоду наиболее чувствительны худощавые люди, у них понижается работоспособность, появляется плохое настроение, может быть состояние депрессии. Тучные люди тяжелее переносят жару – испытывают удушье, учащенное сердцебиение, повышается раздражительность. Артериальное давление имеет тенденцию понижаться в жаркие дни, а повышаться в холодные, хотя примерно у одного из трех оно в жару повышается, а понижается в холодные дни. При низких температурах отмечается замедление реакции диабетиков на инсулин.

Для нормального теплоощущения большое значение имеет подвижность и направление воздушного потока воздуха. Наиболее благоприятная скорость движения воздуха в зимний период – 0,15 м/с, а в летний – 0,2–0,3 м/с Воздух, движущийся со скоростью 0,15 м/с вызывает у человека ощущение свежести. Действие ветра на состояние организма связано не с его силой.

При ветре меняются температура, атмосферное давление, влажность, а именно эти перепады сказываются на здоровье человека: появляются тоска, нервозность, мигрень, бессонница, недомогание, учащаются приступы стенокардии.

Изменение электромагнитного поля вызывает обострение сердечно-сосудистых заболеваний, усиливаются нервные расстройства, появляется раздражительность, быстрая утомляемость, тяжелая голова, плохой сон. На воздействие электромагнитных изменений сильнее реагируют мужчины, дети и старики.

Понижение во внешней среде кислорода происходит при вторжении теплой воздушной массы, с повышенной влажностью и температурой, что вызывает ощущение нехватки воздуха, одышку, головокружение. Повышение атмосферного давления, усиливающийся ветер, похолодание ухудшают общее самочувствие, обостряет сердечно-сосудистые заболевания.

Из книги Наука Пранаямы автора Свами Шивананда

4. Дозы лекарственных веществ. Значение состояния организма и внешних условий для действия лекарства Различают пороговые, терапевтические и токсические дозы. Для каждого вещества имеется минимально действующая, или пороговая, доза, ниже которой действие не проявляется.

7. Значение состояния организма и внешних условий для действия лекарств. Всасывание и распределение лекарственных веществ Идиосинкразия – чрезвычайно высокая чувствительность к лекарственным препаратам. Она может быть врожденной или результатом сенсибилизации, т. е.

Организация специальных условий для игр Организация занятий с аутичным ребенком предполагает создание специальных условий и пространства для игр. Следует с самого начала оговорить это с родителями, предупредить о возможных последствиях (например, беспорядке), убедить

Создание условий для творческого самовыражения ребенка, выявления его внутренних возможностей Для особого ребенка творить – это не обязательно создавать новое, это скорее – выражать себя. Любое творчество для него – больше процесс, чем результат. В ходе этого процесса

Глава 1. Влияние условий выращивания золотого уса на сочетаемость с другими веществами Условия произрастания или выращивания золотого уса объективно влияют на свойства растения и, соответственно, на сочетаемость его с другими веществами. Рассмотрим подробнее, какие

Пять условий активного долголетия Известный физиолог И.А. Аршавский, посвятивший свои исследования изучению возрастной физиологии, отметил, что чем выше потенциальная лабильность скелетной мускулатуры и, соответственно, потенциальная лабильность прочих систем

ТЕХНИКА СОЗДАНИЯ УСЛОВИЙ ДЛЯ ВХОЖДЕНИЯ В МЕТОД ВЛГД Предупреждение! Выполнять только под контролем методиста.1. Занять удобную позу, сидя на стуле. А лучше всего в позе «лотос». Идеально выровнять позвоночник и удерживать его вертикально. Усилием воли как можно больше

III. Физиологические эффекты гормонов коры надпочечников в организме и механизм их действия Продуцируемые надпочечниками соединения оказывают влияние на многие процессы обмена веществ и функции организма.Гормоны коры надпочечников активно влияют на обменные процессы

IV. Физиологические эффекты гормонов мозгового слоя надпочечников – катехоламинов и механизм их действия Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются

ПОДГОТОВКА УСЛОВИЙ ДЛЯ ПЕРЕХОДА НА СЫРОЕДЕНИЕ В первое время держитесь как можно дальше от традиционных трапез. Избегайте ресторанов, дней рожденья и прочих праздников в компании. Если вы все-таки решили пойти на такую встречу, подумайте о том, что вы будете там есть, и,

ВЛИЯНИЕ ОБРАЗА ЖИЗНИ, УСЛОВИЙ БЫТА И ХАРАКТЕРА ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ НА РАЗЛИЧНЫЕ КОНСТИТУЦИОНАЛЬНЫЕ ТИПЫ Систему слизи поддерживают щадящий образ жизни, леность, бездействие, комфортное жилье, калорийная пища, принимаемая в большом количестве, умеренная работа,

Изменение жизненных условий и болезней Исчезновение в цивилизованных странах крупозной пневмонии рассматривается как большое достижение современной терапии. С начала нашего века вплоть до конца первой мировой войны клиницисты знали, что пневмония поражает только

IV. Влияние метеорологических явлений на рождение гениальных людей Убедившись в громадном влиянии метеорологических явлений на творческую деятельность гениальных людей, мы легко поймем, что и на их рождение климат и строение почвы также должны оказывать весьма

Техника создания условий для вхождения в метод ВЛГД Внимание! Выполнять только под контролем методиста. Займите удобное положение, сидя на стуле, а лучше всего в позе «Лотос». Идеально выровняйте позвоночник и удерживайте его вертикально. Усилием воли как можно больше

ГЛАВА 1 ВЛИЯНИЕ ПЕРЕКИСИ ВОДОРОДА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА Как происходит выделение атомарного кислорода из перекиси водорода?Этому процессу способствует фермент каталаза, содержащийся в плазме крови, белых кровяных тельцах и эритроцитах. При

Метеорологические условия (микроклимат) характеризуется параметрами:

2.1.Температура воздуха, 0 С;

2.2. Относительная влажность воздуха;

2.3. Скорость движения воздуха, м/с;

2.4 Интенсивность теплового излучения (облучения работающих), Вт/м 2

2.5. Температура поверхностей ограждающих конструкций (стены помещения, пол,

Температура воздуха – это параметр характеризующий его тепловое состояние и определяется кинетической энергией движения молекул газов.

Микроклимат оказывает существенное влияние на общее состояние и работоспособность человека так как он постоянно находится в состоянии теплового обмена с окружающей средой. Нормальное протекание физиологических процессов в организме человека возможно лишь тогда, когда выделяемое тепло с поверхности тела человека отводится в окружающую воздушную среду, при условии её количественного показателя температуры, находящегося в пределах ниже нормальной температуры тела здорового человека (+ 36 . . .37 0 С, среднестатистический медицинский показатель 36,6 0 С).

Оптимальные климатические условия характеризуются уравнением теплового баланса организма, при котором теплопередача от организма человека равна теплообразованию, благодаря чему температура тела сохраняется в нормальных пределах. Уравнение теплового баланса может быть представлено выражением:

Q к = Q из + Q ис + Qв, (1)

Где Q к - Суммарная теплоотдача организма в окружающую среду (Дж, Вт);

Q - Теплоотдача излучением (Дж, Вт);

Q - Теплоотдача в результате испарения пота (Дж, Вт);

Q - Теплоотдача при выдыхании воздуха (Дж, Вт).

Условия воздействия микроклиматических факторов на организм человека определяется термостабильностью и терморегуляцией. Термостабильность определяется непосредственно за счёт терморегуляции оргвнизма.

Термостабильность – параметр теплового самочувствия человека, определяющий способность организма к восстановлению посредством сохранения его теплового баланса.

Терморегуляция – это способность организма поддерживать температуру тела в определённых постоянных границах (близких 36,6 0 С) при изменении внешних условий и тяжести выполняемой работы. Терморегуляция осуществляется за счёт установления оптимальных равновесных тепловых соотношений путём снижения уровня обмена веществ при угрозе перегревания или охлаждения организма (химическая терморегуляция ), а также отдачей тепла в окружающую среду (физическая терморегуляция ). Нарушение теплообмена усугубляет воздействие на человека материальных (вредные вещества) и энергетических производственных факторов (инфразвук, шум, ультразвук.

Процессы регулирования тепловыделений могут осуществляться по четырем принципиальным механизмам:

1. терморегуляция путём изменения интенсивности кровообращения - заключается в регуляции организмом подачи крови от внутренних органов к поверхности тела за счёт расширения или сужения подкожных кровеносных сосудов:

2. биохимическая терморегуляция - заключается в изменении интенсивносит происходящих в организме человека окислительных биохимических реакций:

3. терморегуляция путём изменения интенсивности потоотделения – заключается в изменении количества испарённой влаги (пота), приводя к испарительному охлаждению тела человека:

4. суммарная терморегуляция осуществляется всеми указанными механизмами.

Производственная среда может дополнительно характеризоваться радиацией, электрическим состоянием воздушной среды, окружающей рабочее место.

В горячих цехах или при работе на холоде дополнительно учитывается так называемая тепловая нагрузка среды, характеризующаяся либо повышенным тепловым облучением, либо воздействием пониженных или отрицательных температур.

При высотных полётах в дополнение к параметрам учитывается барометрическое давление, радиация и ионизация воздуха.

Отклонение величин перечисленных факторов от нормативных значений могут влиять как на характеристики технологического процесса, так и качество изделий и выполняемой работы (повышенная влажность воздуха при склеивании деталей ухудшает качество соединений и т.п.). Кроме того, повышенная температура опасна для электрических кабелей и проводов из-за изменения свойств их изоляции, а в сочетание с повышенной влажностью производственной среды может быть причиной короткого замыкания в электрических цепях и рассматриваться как опасный производственный фактор.

Факторы, влияющие на микроклимат можно разделить на 2 группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, кратность воздухообмена, количество людей в помещениях и другие).

Для поддержания параметров воздушной среды рабочих зон решающее значение принадлежит факторам второй группы.

2.1.1 Влияние изменения температуры внешней среды на тепловое самочувствие человека

Тепловое самочувствие человека, или тепловой баланс, в системе «человек-среда обитания» зависит от температуры среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физической нагрузки органи зма.

Повышение температуры воздуха в производственном помещении способствует увеличению теплоотдачи за счет испарения, а также из-за интенсивности кровообращения, так как при повышенной температуре кровеносные сосуды человека расширяются, то потеря тепла за счет теплопроводности, конвекции и нагрева выдыхаемого воздуха уменьшается.

Понижение температуры и повышение скорости воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. При повышении температуры воздуха возникают обратные явления.

Исследованиями установлено, что при температуре воздуха более 30С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116С

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tОС=30С так, как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем загрязнения болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничивать относительную влажностью в пределах 3070процентов.

Вместе с потом организм теряет значительное количество минеральных солей (до 1%, в том числе 0,40,6% NaCl). При неблагоприятных условиях потеря жидкости может достигать 810 л за смену и в ней до 60г поваренной соли (всего в организме около 140г NaCl). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки. Считается допустимым для человека снижение его массы на 23% путём испарения влаги - обезвоживания организма. Обезвоживание на 6% влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарения влаги на 1520% приводит к смертельному исходу.

Для восстановления водного баланса людям, работающим в горячих цехах, устанавливают автоматы с подсоленной (около 0,5% NaCl) газированной питьевой водой из расчета 45л на человека в смену. На многих заводах для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или зеленый чай.

Длительное воздействие высокой температуры, особенно в сочетании с повышенной влажностью, может привести к перегреванию организма выше допустимого уровня- гипертермии. Состоянию, при котором температура тела поднимается до 3839С. Гипертермия (тепловой удар) сопровождается головной болью, головокружением, общей слабостью, искажением цветового восприятия, сухостью во рту, тошнотой, рвотой, обильным выделением пота. Пульс и дыхание учащены, в крови увеличивается содержание азота и молочной кислоты. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной переохлаждения организма - гипотермии. При продолжительном действии холода дыхание становится неритмичным, изменяется углеводный обмен. Увеличение обменных процессов при понижении температуры на 1С составляет около 10%, а при интенсивном охлаждении может возрасти в 3 раза по сравнению с уровнем основного обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.

Атмосферное давление оказывает существенное влияние на процесс дыхания и самочувствие человека. Основным органом дыхания человека, посредством которого осуществляется газообмен с окружающей средой, является трахеобронхиальное дерево и большое число лёгочных пузырей (альвеол), стенки которых пронизаны густой сетью капиллярных сосудов. Общая поверхность альвеол взрослого человека составляет 90150м3. Через стенки альвеол кислород поступает в кровь для питания тканей организма.

Интенсивность диффузии кислорода в кровь определяется парциальным давлением (p) кислорода в альвеолярном воздухе.

Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода (?) в пределах 95120мм.рт.ст. Изменение парциального давления, вне данных пределов приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему. На высоте 23км (p = 70мм.рт.ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. Длительное пребывание человека в этой зоне не сказывается на его здоровье, и она называется зоной достаточной компенсации. С высоты 4км (p = 60мм.рт.ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода (21%), может наступить кислородное голодание - гипоксия. Основные признаки гипоксии - головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

Удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом (100%) до высоты 12 км. При длительных полётах на летательных аппаратах на высоте более 4 км применяют либо кислородные маски, либо скафандры, либо герметизацию кабин. При нарушении герметизации давление в кабине резко снижается. Часто этот процесс протекает быстро, что имеет характер своеобразного взрыва и называется взрывной декомпрессией. Эффект воздействия взрывной декомпрессии на организм зависит от начального значения и скорости понижения давления.

В общем случае, чем меньше скорость понижения давления, тем легче она переносится. Уменьшение давления на 385 мм. рт. ст. за 0,4 с человек переносит без каких-либо последствий. При этом новое давление, которое возникает в результате декомпрессии, может привести к высотному метеоризму и высотным эмфиземам. Высотный метеоризм - это расширение газов, имеющихся в свободных полостях тела (на высоте 12 км объём желудка и кишечного тракта увеличивается в 5 раз). Высотные эмфиземы, или высотные боли, - это переход газа из растворенного состояния в газообразное.

В период компрессии (повышения давления) и пребывания при повышенном давлении организм через кровь насыщается азотом. Полное насыщение организма азотом наступает через 4 часа пребывания в условиях повышенного давления.

При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса. Длительное пребывание при избыточном давлении (порядка 700 кПа) приводит к токсическому действию некоторых газов, входящих в состав вдыхаемого воздуха. Оно проявляется в нарушении координаций движений, возбуждении или угнетении, галлюцинациях, ослаблении памяти, расстройстве зрения и слуха.

В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация (выделение) азота из тканей, которое осуществляется через кровь и затем легкие. Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию (закупорка сосудов газами) и как её проявление - декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение или перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление её движения.

2.1.3 Влажность воздуха

Влажность воздуха определяется содержанием в нем водяных паров и измеряется в абс олютных и относительных единицах. Она характеризуется абсолютной, максимальной и относительной влажностью, а также дефицитом насыщения.

Абсолютная влажность - упругость водяных паров, находящихся в рассматриваемый момент в воздухе, выраженное в миллиметрах ртутного столба или количество водяных паров в граммах, содержащихся в 1 м3 воздуха в момент исследования.

Максимальная влажность - упругость водяных паров при полном насыщении воздуха влагой при определенной температуре или количество водяных паров в граммах, содержащихся в 1м3 воздуха при той же температуре.

Относительная влажность представляет собой отношение значений абсолютной и максимальной влажности, выраженное в процентах.

Дефицит насыщения (физиологический) - разность между значениями влажности воздуха пи температуре 37С (температура тела человека) и абсолютной в момент исследования. Он указывает, сколько граммов воды может извлечь из организма человека 1м3 выдыхаемого им воздуха.

Дефицит насыщения относится к одному из влажных экологических параметров, так как характеризует сразу 2 параметра - влажность и температуру. Чем выше дефицит насыщения, тем суше и теплее, и наоб орот.

Важной характеристикой влажности воздуха является такое понятие, как точка росы.

Точка росы характеризуется температурой, при которой воздух становится насыщенным водяными параметрами, переходящими в капельножидкое состояние - появление росы. Точку росы определяют по абсолютной влажности. Зная точку росы, можно графически определить парциальное давление водяного пара, а, следовательно, и относительную влажность.

Гигиеническое значение влажности воздуха определяется влиянием на тепловой обменорганизма.