Погода в Санкт-Петербурге | Pogoda78.ru

20:42Суббота21 Февраля
Главная » Статьи » Влияние погоды на прохождение радиоволн

Влияние погоды на прохождение радиоволн

Влияние погоды на прохождение радиоволн

Propagation Notes by YL2DX


1. "Разогрев ионосферы"

Частенько можно услышать рассуждения о том, что во время больших соревнований "разогрели ионосферу" и от этого прохождение улучшилось. Научные данные этого не подтверждают.

Ограниченную область ионосферы действительно можно "разогреть" мощным пучком радиоизлучения, можно ее и промодулировать, и даже заставить детектировать (эффект Гетманцева, открытый сравнительно недавно). Но, во-первых, при таком "подогреве" в ионосферной плазме, как правило, усиливается поглощение радиоволн, следовательно, прохождение КВ, обусловленное преломлением радиоволн в "подогретой" области, не улучшается, а ухудшается!

Дело в том, что для ионизации газов (то есть для отрыва электронов от атомов) в верхних слоях атмосферы нужна энергия, которую обеспечивают только электромагнитные колебания чрезвычайно высоких частот (ультрафиолетовое и рентгеновское излучение Солнца). Энергии волн радиочастотного спектра достаточно только для "раскачивания" свободных электронов (чем и объясняется электропроводность плазмы), а чем больше свободные электроны раскачиваются, тем чаще они соударяются с нейтральными молекулами или с ионами (тогда они рекомбинируют) - значит, чем больше мощность радиоволны, тем больше поглощение энергии и ниже степень ионизации т.е. происходит "насыщение" поля в плазме. Существует, правда, и противоположное явление - так называемое "просветление плазмы" на трассе мощного узкого пучка радиоволн, но оно не характерно для рассматриваемого нами случая.

Во-вторых, для проявления нелинейных свойств ионосферной плазмы напряженность поля должна превышать 10 - 104 мВ/м (в зависимости от длины волны и области ионосферы). Эта цифра может показаться небольшой, но плотность потока энергии радиоволн, которую нужно для этого обеспечить (и обеспечивали, но не любители), несравнима с той, которую могут создать участники любого контеста.

Если взять даже очень популярный и "шумный" контест, то число передатчиков, одновременно работающих на передачу в данный момент времени, едва ли достигнет нескольких тысяч. Мощность каждого можно в среднем оценить, допустим, в 200 Вт (в основном от 30 до 500 Вт). Речь здесь идет о средней (не пиковой) мощности излучения передатчиков большинства участников. Тех, кто "качает" 1-3 кВт - на два порядка меньше, а еще более наглых "спортсменов" - несколько десятков. Учитывать направленность антенн вряд ли стоит, так как у разных участников они направлены в разные места ионосферы. Таким образом, суммарная эффективная излучаемая мощность составит не более одного мегаватта, "размазанного" по всей ионосфере т.е. в среднем менее 2 нановатт на квадратный метр площади поверхности ионосферы, если считать ее сплошной гладкой сферой на средней высоте области F. Но все эти сигналы не когерентны, поэтому эффект от их совместного воздействия значительно меньше, чем при арифметическом суммировании мощностей. Кроме того, часть этой энергии расходуется на нагрев области D, не отражающей КВ, а другая часть бесследно уходит сквозь ионосферу в космос.

С мегаваттными когерентно излучаемыми мощностями на Земле постоянно работают десятки, если не больше, вещательных радиостанций. Сотни и тысячи других почти непрерывно излучают от 50 до 500 кВт. Сотни тысяч передатчиков разного назначения от единиц ватт до десятков киловатт на разных частотах все время включаются то здесь, то там по всему миру. Поэтому вклад в "разогрев" ионосферы со стороны радиолюбителей составляет очень малую долю, он лишь на уровне повседневных флуктуаций среднего уровня радиоизлучений, производимых всем человечеством, не говоря уж о природных.

Если бы ионосфера "подогревалась" легко, нам было бы совсем не весело. Ведь, в первую очередь, стал бы проявляться давно известный Люксембург-горьковский эффект - явление взаимной модуляции сигналов, обусловленное нелинейностью ионосферы при очень мощных воздействиях на нее. Хотя этот эффект действительно встречается при мощном радиовещании на средних волнах, у нас до этого дело пока (слава богу!) не дошло.

Но прохождение выглядит как будто бы и в самом деле лучше именно в такие дни. Происходит это по субъективным причинам. Во-первых, в эфир выходит много народу из тех мест, где в обычные дни в данное время суток большинство спит или находится на работе. И в другие дни, именно в такое время и на том же диапазоне, такое же прохождение может быть в ту же часть света, но тогда оттуда на передачу мало кто работает (а из сравнительно редконаселенных регионов - может быть, и никто). Во время контеста резко возрастает количество станций, работающих на передачу отовсюду и круглосуточно. Некоторые "качают мощу" в 10, а то и в 100 раз больше, чем повседневно. Поэтому их может быть, хоть негромко, но слышно при таких условиях прохождения, при каких с "повседневной" мощностью их сигналы были бы ниже уровня атмосферных шумов.

Если бы мы были в состоянии влиять на свойства ионосферы, то не было бы случаев, когда прохождение радикально изменяется на протяжениии крупных контестов. А это бывает достаточно часто, хотя среднее число участников и средняя излучаемая их радиостанциями энергия на протяжении контеста меняются мало.

Еще один важный фактор: соревнования не даром проводятся в совершенно определенные дни. Даты многих из них выбирались на основании многолетних исследований сезонных закономерностей распространения коротких волн. Так что, высокая вероятность хорошего прохождения - не следствие, а причина проведения соревнований именно в эти дни.

В том, что хорошее DX-прохождение бывает чаще, чем нам кажется, но нами не всегда используется, легко убедиться, слушая на совершенно пустом диапазоне любительские маяки (особенно удобна всемирная координированная сеть маяков NCDXF, работающая на частотах 14.100, 18.110, 21.150, 24.930 и 28.200 МГц; на 10 и 6 м диапазонах маяков множество). Маяки имеют меньшую мощность, чем использует большинство из нас. Иной раз часами они проходят на 599, но желающих воспользоваться прохождением нет. Как мы обычно поступаем? Заглянули на диапазон - вроде, никого. Ну и сразу ушли на другой, где кто-нибудь шевелится. А надо было бы давать CQ на "пустых" диапазонах. Ведь когда все только слушают, никто ничего не услышит!

2. "Одностороннее прохождение"

Несмотря на частые жалобы коротковолновиков, одностороннее прохождение радиоволн как объективное физическое явление бывает весьма редко. В подавляющем большинстве случаев дело не в том, что радиоволны отражаются или поглощаются по-разному в противоположных направлениях на одной и той же трассе. Дело, как правило, в разном отношении уровня полезного сигнала к уровню помех на том и другом концах трассы.

Вот довольно типичный пример: ночью на диапазоне 20 метров очень хорошо принимаем с RS=55 (по S-метру) сигналы радиолюбителя с одного из островов Карибского бассейна. У нас диапазон чист и прозрачен, его сигнал в таких условиях звучит так же хорошо, как днем на фоне помех и шумов звучал бы при уровне S=9+. У него, например, всего лишь 100 W и антенна GP, а у нас 500 W и Yagi. Значит, у него наш сигнал на балл-полтора сильнее, чем его сигнал у нас, то есть не меньше S=6. Но у него-то дневное прохождение: уровень атмосферных шумов в тропической зоне вполне может быть и S=5, и S=7, особенно с антенной GP. Даже при отсутствии других вызывающих станций, мы у кариба могли бы проходить лишь на уровне шума, то есть, скажем, с RS=36 или 46, если он будет правильно пользоваться шкалой RS (а если так, как неправильно делают многие - путая "R" с "S", то можно получить рапорт и вроде 53 или 54…Hi). Любой американец с той же сотней ватт находясь на расстоянии, оптимальном для односкачкового прохождения, будет идти на острове на 59+, и шансов быть услышанными из-под его сигнала у нас почти нет.

Еще больше вариаций на тему "одностороннего прохождения" возникает на низкочастотных диапазонах. Там уровень местных помех выше и часто применяются отдельные антенны для приема и передачи, Поэтому нередко уровень сигнала, создаваемый данной радиостанцией в конкретном направлении, мало взаимосвязан с качеством приема на этой станции в том же направлении.

Дело может быть и в существенно различной мощности, реально излучаемой каждым из корреспондентов при передаче. Кроме того, в эфире хватает и просто "чайников", не способных, а иногда и не желающих воспринимать сигнал, если он звучит менее ясно, чем из Hi-Fi аудиосистемы. Но к феномену действительно одностороннего распространения радиоволн все эти явления отношения не имеют.

3. Погода и прохождение на КВ

Прохождение УКВ тесно связано с погодой, но на КВ такая связь невелика, а чаще просто отсутствует. Приземный слой атмосферы до высот 10-20 км, в котором происходит все то, что мы называем погодой, находится намного ниже, чем те слои ионосферы, от состояния которых в первую очередь зависит дальнее распространение коротких, средних и длинных радиоволн.

На распространение КВ не влияют сколько-нибудь заметно ни вариации температуры и давления, ни движение воздуха. Сами по себе ни водные пары в такой концентрации, как в облаках или тучах, ни капли дождя, ни падающие снежинки на распространение КВ влияния не оказывают.

Некоторое влияние на местные условия распространения радиоволн и на работу антенн оказывает изменение проводимости почвы, вызванное выпадением осадков, засухой или промерзанием.

В нижних слоях атмосферы происходят электрические явления, которые могут вызвать лишь локальные и довольно кратковременные ухудшения прохождения КВ. Например, большая, сильно заряженная грозовая туча может в некоторой степени поглощать радиоволны, если окажется на их пути, а также может навести большие электростатические заряды на антенны и другие объекты. Из-за помех от статики прием может стать совершенно невозможен, но это не обязательно означает, что туча полностью поглотила радиоволны. Чаще, просто уровень шума значительно больше уровня сигналов. Но, как только тучи разрядятся (молнией или постепенно), все эти явления исчезнут.

Изменения солнечной активности вызывают значительные перемены в ионосфере, но количество тепловой энергии солнца, достигающей нижних слоев атмосферы и поверхности Земли, и определяющей погодные явления, меняется очень мало. Если и говорить о взаимосвязи распространения КВ и погоды, то она не в том, что погода влияет на прохождение, а только в том, что оба явления по отдельности и неоднозначно обусловлены деятельностью Солнца, впрочем, как и вообще все сущее вокруг.

Во всяком случае, приметы вроде "Погода улучшается - наверное, и проход пойдет на поправку" на КВ не имеют серьезной основы, а базируются большей частью на случайных или сезонных совпадениях. Просто рано или поздно все меняется - и погода, и прохождение, и курсы валют на Гонконгской бирже, но не обязательно одно вытекает из другого.

4. Полезный маяк

Тем, кто имеет выход в интернет, не составляет никакого труда в любой момент узнать во всех подробностях данные о солнечной активности и о геомагнитной обстановке (например, на сайте http://sec.noaa.gov/). А если интернета нет - тоже не беда. Уже много лет на частоте 10144,0 кГц работает маяк DK0WCY. Он с немецкой добросовестностью и регулярностью передает важнейшие для оценки и прогнозирования прохождения данные: индексы геомагнитной активности (A и К) в г.Киль (Германия) и на обсерватории Болдер (штат Колорадо), число солнечных пятен (R) и уровень солнечного излучения в 10-сантиметровом диапазоне (Flux), а также краткий прогноз солнечной активности и состояния магнитного поля Земли на текущий день.

Ценно то, что CW передачи идут непрерывно и круглосуточно, короткая сводка передается каждые 5 минут. Между сводками передается позывной и нажатие. Данные освежаются каждые три часа. Если в Германии наблюдается или ожидается радиоаврора, то вместо нажатия передается серия точек и слово "aurora".

Кстати, суффикс позывного - WCY - не случаен: маяк был создан в 1983 году, когда отмечался Всемирный год связи (World Communications Year).

1. Кессених В.Н. Распространение радиоволн. ГИТТЛ, Москва, 1952
2. Долуханов М.П. Распространение радиоволн. "Связь", Москва, 1972

Явления влияющие на прохождение радиоволн

Дифракция - отклонение радиоволн вблизи края непрозрачного (для радиоволн) препятствия от первоначального направления движения. Проходя возле края препятствия, волна как бы огибает его вершину, в результате чего часть энергии радиоволн попадает в зону тени. Край препятствия является повторным источником радиоволн, своеобразным пассивным ретранслятором. В случае световых волн наблюдается аналогичные явления, поэтому говорят, что край препятствия "светится".

Атмосферная рефракция радиоволн - так называется (преломление), искривление траектории радиоволн. Рефракция происходит в основном в нижних слоях атмосферы, которую называют тропосферой. Тропосфера окружает землю слоем толщиной примерно 12 км. (8 км. у полюсов, 16 км. у экватора). Диэлектрическая проницаемость воздуха зависит от его влажности, температуры и давления, С увеличением высоты диэлектрическая проницаемость уменьшается, стремясь к единице. Незначительное изменение e воздуха с изменением высоты приводит к нормальной рефракции, траектория волны искривляется в сторону земли, так как верхняя часть фронта излученной волны, находясь в электрически менее плотной среде, приобретает большую фазовую скорость, чем нижняя.

Могут возникать условия, когда искривление волны в сторону земли будет сильнее, чем обычно, это повышенная положительная рефракция. При возрастании e траектория изменится, волна отклоняется от земной поверхности. Такой случай называют отрицательной рефракцией. Все эти явления приводят к тому, что при многократном отражении радио­волн от отражающего слоя и земли, корреспонденты имеющие одинаковую мощность передатчиков и одинаковые антенны, имеют разную оценку силы приходящего сигнала. В большей мере это проявляется при проведении радиосвязи в направлениях север-юг или юг-север.
Изменение атмосферной рефракции происходит медленно. Явление атмосферной рефракции характерно не только для радиоволн, но и для световых лучей. Благодаря рефракции человек, стоящий на берегу моря, может видеть диск Солнца, находящийся за горизонтом.

Интерференция (наложение) радиоволн. Одна волна-прямая, распространяется по кратчайшему пути, другая проходит более длинный путь отражаясь от земли или больших предметов. Результирующая напряженность поля определяется разностью фаз этих волн и может оказаться либо больше, либо меньше напряженности поля каждой волны.

Для устранения интерференции, для данной частоты можно передвинуть антенну дальше или ближе к передающей станции или изменить высоту. Это справедливо лишь при условии прямой видимости.
Для диапазонов KB экспериментально установлено, что для трасс протяженностью 1500 км. наиболее вероятные углы прихода радиоволн 20-30°, для трасс 2000 – 3000 км. в пределах 12-20°, для трасс 3000-5000 км. в пределах 3-18°, а для более длинных трасс в пределах 3-12°. Эти углы являются оптимальными и для передачи. Таким образом, для создания оптимальных условий связи максимум вертикальной диаграммы направленности антенны, используемой для связи за счет отражения от ионосферы должен быть направлен на отражающий слой и менять свой наклон при изменении высоты этого стоя. Это можно реализовать, применяя двухэтажную синфазную решетку из двух антенн с управляемой диаграммой направленности в вертикальной плоскости.

Управление диаграммой направленности осуществляется фазовращателем в тракте запитка одной из антенн. При применении одной направленной антенны ширина диаграммы направленности в вертикальной плоскости должна быть порядка 30-40° с прижатым к земле лепестком. Отражающей слой ионосферы находится в постоянном движении при более узкой диаграмме направленности в вертикальной плоскости сигнал подвержен большим замираниям, так как при изменении высоты отражающего слоя отраженный от ионосферы луч сканирует по земле, изменяется напряженность поля в месте приема, и мы наблюдаем глубокие замирания сигнала

По каким параметрам различается воздействие радиоволн на организм

Многие знают, что злоупотреблять солнечными ваннами нельзя. Но мало кто задумывался над тем, что включенный телевизор, электробритва или даже обычная лампа, испускают не менее вредные для нас излучения. До недавнего времени считалось, что электромагнитные волны, которые излучают бытовые электроприборы и электросеть практически безвредны для здоровья человека. Однако последние исследования американских специалистов подтверждают, что это совсем не так. Проводя эксперименты над клетками животных, ученые установили, что электромагнитное поле при определенных условиях воздействует на деятельность гормонов, которые обеспечивают прохождение нервных импульсов. Подобное воздействие и на организм человека может привести к целому ряду расстройств, в том числе с нарушением биоритмов, бессоннице и даже хронической депрессии. Успокаивает пока то, что до сих пор никто не получил подтверждения того, что клетки человека будут реагировать на излучение подобным образом. Интересно, что во время эксперимента было доказано, что пульсирующее излучение, например, телевизоров или дисплеев больше вредит живым клеткам, нежели стабильное излучение высоковольтных линий электропередач. После того, как куриные яйца помещали в пульсирующее поле, у них уменьшалось количество эмбрионов с отклонением от нормального развития. Журнал «Вашингтон бизнес джорнел», основываясь на данных Государственного института профессиональных заболеваний, сообщил о существовании 90% вероятности того, что у операторов видеотерминалов в 1,5 раза чаще бывают выкидыши и они рожают в 2,5 раза больше детей с врожденными пороками, нежели остальные женщины. Серьезную обеспокоенность вызывают результаты других американских ученых, сделанных после обследования женщин, работающих на дисплеях ЭВМ. Так, у беременных женщин, работающих больше 20 часов в неделю в первые 3 месяца беременности вдвое увеличивается угроза выкидыша. Кроме этого, операторы жалуются на головные боли и сонливость. Все это называется компьютерным синдромом, который вызывается, как считают, воздействием радиационного излучения электромагнитных приборов. В 1996 г. в России Госсанэпиднадзор РФ утвердил «Гигиенические требования к видеодисплейным терминалам, персональным ЭВМ и организации работ» (СанПин 2.2.2.542-96), согласно которым беременным женщинам запрещается работать на ПК. Этот юридический документ призван защитить пользователей ПК, которые вправе требовать от руководства предприятий соответствующих условий труда. Обязательства по соблюдению этих требований ложится на руководителей фирм.

Американский ученый Питер Кемпбел нашел, по его мысли, эффективный способ противодействия компьютерному синдрому. Достаточно, говорит он, установить рядом с компьютером горшок с кактусом и это приведет к падению уровня радиации на рабочем месте оператора. Наибольший эффект дают кактусы из Перу и Мексики. Нужно сказать, что особых подтверждений того, что кактусы поглощают электромагнитное излучение нет. Вся эта информация основывается на растении суккуленте, одном из типов кактусов, которое произрастает на высокогорье и приспособилось к условиям постоянного фона. Не известно, спектр излучения от компьютера соответствует ли диапазону волн, которое воздействует на кактус в реальности. Специалисты отчасти связывают утомление пользователей ПК с влиянием экрана монитора, около которого создается электростатическое поле. По всей видимости, наличие у кактуса иголок способствует уменьшению этого поля. Уменьшение электростатического поля можно достичь и без кактуса, просто заземлив экран.

Отметим, что замерить электромагнитное поле ПК довольно сложно и это дорого стоит. Необходимое оборудование стоит в 15 раз больше любого ПК. Эти измерения являются прерогативой санэпиднадзора, но не у всех у них имеется такое дорогое оборудование. Поэтому при покупке ПК полезно поинтересоваться наличием в его инструкции гигиенического сертификата СН.2.2.2.542-961, который обычно получает фирма производитель у главного органа санэпиднадзора.

А вот директор японского Института профилактики заболеваний из г. Киото установил, что испускаемые древесным углем отрицательные ионы оказывают успокаивающее воздействие на организм. Уголь способен до 50% уменьшить пагубное влияние электромагнитного излучения компьютеров и телевизоров. В большинстве японских домов древесный уголь превратился в декоративный элемент. Куски угля ставят на телевизоры, кладут в вазочки и углы комнат, в этом случае от него максимальная польза. И все же очень переживать и отказываться от электроники пока еще рано.

Ученые формулируют свои выводы очень осторожно, хотя большинство экспериментов требует тщательной перепроверки, хотя категорично отрицать вредное воздействие бытовой техники нельзя. Сейчас никто не возьмется также преждевременно говорить и о существовании большого риска. В каждом случае, подчеркивают ученые, негативное влияние электромагнитного поля на здоровье человека, не выдерживает сравнения с вредом от курения и алкоголя. Недавно английская газета «Электромагнетикс ньюс» сообщила, что китайские исследователи из Медицинского университета города Ханчжоу установили, что длительное воздействие микроволнового излучения и радиочастот низкой частоты воздействует на иммунную систему тех, на кого оно направлено. Китайские ученые пришли к этим заключениям после наблюдения за группой из 1170 солдат и студентов, которые проживали вблизи радиоантенн или радарных установок в течение 1 года. Представители этой группы имели нарушения фагоцитоза, дезориентацию, замедленную визуальную реакцию и ухудшенную память. Одновременно у контрольной группы из 689 человек подобных симптомов не было.

Американские исследователи обследовали людей, которые работают недалеко от различных генераторов электромагнитных волн и также установили, что у многих из них замечено ослабление памяти, кроме этого, они быстро устают и страдают потерей аппетита. Было выявлено, что работники, имеющие вставные зубы, жаловались на появление металлического привкуса во рту в период работы.

Зарубежные исследования о влиянии электромагнитных волн на здоровье человека носят неоднозначный характер. В связи с этим отечественные ученые из НПО «Радон» начали исследования о взаимосвязи между местом жительства москвичей и заболеваемостью от возможного радиоактивного или электромагнитного излучения. Как известно в Москве предостаточно мест с такого рода источниками излучений. Особый акцент делается на предрасположенность к болезням и опухолям. Результаты работы позволят шире взглянуть на проблему, что позволит прогнозировать нежелательные последствия от воздействия электромагнитных волн на гены человека.

В отношении воздействия электромагнитных полей бытовых приборов (СВЧ-печи и др.) нет достоверных и закономерных данных о том, что они не представляют угрозы для здоровья человека. Опасность представляет электромагнитное излучение большой мощности, если конструкция прибора несовершенна. Проверка, как правило, производится по максимальному значению плотности потока энергии (ППЭ) на расстоянии 0,5 м от корпуса прибора.

Исследования воздействия радиоволн на человека, наряду с отрицательными сторонами этой проблемы, помогли выявить и положительные, что позволило создать больницы для лечения с помощью установок высокочастотного прогрева. В основе лежит явление, вызывающее разогрев живых тканей при увеличении интенсивности воздействия радиоволн.

Негативно могут влиять радиоволны определенной частоты не только на человека, но и на комаров и тараканов. Особенно это актуально при отдыхе на природе летом, когда не дают покоя комары. Очень оригинально помогают в этом случае туристам некоторые западные радиостанции. Первой в этом деле была парижская радиостанция, которая круглосуточно передавала новости и эстрадную музыку. В один прекрасный день ее дикторы стали читать такое объявление: «Настроив приемник на волну нашей радиостанции, Вы можете обойтись без средств против комаров. Ни один комар не появится возле вас». И это был не рекламный трюк. Наряду с обычными передачами радиостанция начала посылать в эфир не слышные для человеческого уха сигналы, которые отпугивают самок комаров, именно они досаждают человеку. Что касается тараканов, то одна японская фирма создала электронный прибор для борьбы с ними. Речь идет о генераторе размером со спичечную коробочку. Он подключается к электросети и излучает импульсы очень близкие к импульсам самок тараканов. Прибор монтируется в небольшой клетке, к сетке которого подведено высокое напряжение. На крики «электронной самки» ползут самцы, которые касаются сетки и мгновенно гибнут. Изобретение абсолютно безвредно и может быть использовано на складах, ресторанах, кухнях и т.д.

Все более широкое применение радиоэлектроники во всех сферах современной жизни заставило японских ученых обратиться к поиску эффективных методов защиты специалистов, которые работают с приборами, излучающие электромагнитные волны. Как сообщил представитель японской фирмы «Ниссинбо», ими разработана специальная одежда, которая защищает от электромагнитных колебаний. Жилеты и юбки этой одежды сделаны из полиэстера с многослойной подкладкой. Подкладка сделана из ниток меди и никеля, которые отражают 99,9% электромагнитных волн, приходящих от радиоэлектронной техники.

С источниками электромагнитных волн, которые негативно воздействуют на человека борются не только с помощью технических способов, а и правовыми. Несколько лет назад суд американского г. Хьюстона обязал электрическую компанию выплатить 25 млн. долларов за ущерб, нанесенный частной школе. Судьи пришли к заключению, что линия электропередач, проходящая через территорию школы, угрожает здоровью 3000 школьников и потребовали ее переноса в другое место.

Прогноз прохождения радиоволн

Вы наверное обращали внимание на всевозможные баннеры и целые страницы на сайтах радиолюбительской тематики, содержащие разнообразные индексы и показатели текущей солнечной и геомагнитной активности. Вот они то нам и нужны для оценки условий прохождения радиоволн на ближайшее время. Несмотря на всё многообразие источников данных, одним из самых популярных являются баннеры, которые предоставляет Paul Herrman (N0NBH), причём совершенно бесплатно. На его сайте можно выбрать любой из 21 доступных баннеров для размещения в удобном для вас месте, либо воспользоваться ресурсами, на которых эти баннеры уже установлены. В общей сложности они могут отображать до 24 параметров в зависимости от форм-фактора баннера. Ниже приводятся краткие сведения по каждому из параметров баннера. На разных баннерах обозначения одних и тех же параметров могут отличаться, поэтому в некоторых случаях приводится несколько вариантов. Дополнительную информацию по данному вопросу можно прочитать в статье «Индексы солнечной и геомагнитной активности».

Параметры солнечной активности

Индексы солнечной активности отражают уровень электромагнитного излучения и интенсивность потока частиц, источником которых является Солнце.

Интенсивность потока солнечного излучения (SFI)

SFI - это показатель интенсивности излучения на частоте 2800 МГц, генерируемого Солнцем. Эта величина не оказывает прямого влияния на прохождение радиоволн, но её значение гораздо легче измерить, а она хорошо коррелирует с уровнями солнечного ультрафиолетового и рентгеновского излучения.

Число солнечных пятен (SN)

SN - это не просто количество пятен на Солнце. Значение этой величины зависит от количества и размера пятен, а так же от характера их расположения на поверхости Солнца. Диапазон значений SN - от 0 до 250. Чем выше значение SN, тем выше интенсивность ультрафиолетового и рентгеновского излучения, которое повышает ионизацию Земной атмосферы и приводит к формированию в ней слоёв D, E и F. C ростом уровня ионизации ионосферы повышается и максимально применимая частота (MUF). Таким образом, увеличение значений SFI и SN свидетельствует об увеличении степени ионизации в слоях E и F, что в свою очередь оказывает положительное воздействие на условия прохождения радиоволн.

Интенсивность рентгеновского излучения (X-Ray)

Величина этого показателя зависит от интенсивности рентгеновского излучения, достигающего Земли. Значение параметра состоит из двух частей - буквы, отражающей класс активности излучения, и числа, показывающего мощность излучения в единицах Вт/м2. От интенсивности рентгеновского излучения зависит степень ионизации слоя D ионосферы. Обычно в дневное время слой D поглощает радиосигналы на низкочастотных КВ диапазонах (1.8 - 5 МГц) и значительно ослабляет сигналы в дипазоне частот 7-10 МГц. С ростом интенсивности рентгеновского излучения слой D расширяется и в экстремальных ситуациях может поглощать радиосигналы практически во всём КВ-диапазоне, затрудняя радиосвязь и иногда приводя к практически полному радиомолчанию, которое может продолжаться несколько часов.

Шкала интенсивности рентгеновского излучения
Класс Интенсивность Отсутствие радиосвязи
B <10 -6 нет
C от 10 -6 до 10 -5 нет
M от 10 -5 до 10 -4 R1-R2
X >10 -4 R3-R5

Это значение отражает относительную интенсивность всего солнечного излучения в ультрафиолетовом диапазоне (длина волны 304 ангстрем). Ультрафиолетовое излучение оказывает значительное влияние на уровень ионизации ионосферного слоя F. Значение 304A коррелирует со значением SFI, поэтому его увеличение приводит к улучшению условий прохождения радиоволн отражением от слоя F.

Межпланетное магнитное поле (Bz)

Индекс Bz отражает силу и направление межпланетного магнитного поля. Положительное значение этого параметра означает, что направление межпланетного магнитного поля совпадает с направлением магнитного поля Земли, а отрицательное значение свидетельствует об ослаблении магнитного поля Земли и снижении его экранирующих эффектов, что в свою очередь усиливает воздействие заряженных частиц на земную атмосферу.

Солнечный ветер (Solar Wind/SW)

SW - это скорость заряженных частиц (км/ч), достигших поверхности Земли. Значение индекса может лежать в интервале от 0 до 2000. Типичное значение - около 400. Чем выше скорость частиц, тем большее давление испытывает ионосфера. При значениях SW, превышающих 500 км/ч, солнечный ветер может вызвать возмущение магнитного поля Земли, что в итоге приведёт к разрушению ионосферного слоя F, снижению уровню ионизации ионосферы и ухуджению условий прохождения на КВ-диапазонах.

Поток протонов (Ptn Flx/PF)

PF - это плотность протонов внутри магнитного поля Земли. Обычное значение не превышает 10. Протоны, вступившие во взаимодействие с магнитным полем Земли, перемещаются по его линиям в направлении полюсов, изменяя в этих зонах плотность ионосферы. При значениях плотности протонов свыше 10000 увеличивается затухание радиосигналов, проходящих через полярные зоны Земли, а при значениях свыше 100000 возможно полное отсутствие радиосвязи.

Поток электронов (Elc Flx/EF)

Этот параметр отражает интенсивность потока электронов внутри магнитного поля Земли. Ионосферный эффект от взаимодействия электронов с магнитным полем аналогичен потоку протонов на авроральных трассах при значениях EF, превышающих 1000.

Уровень шума (Sig Noise Lvl)

Это значение в единицах шкалы S-метра показывает уровень шумового сигнала, который возникает в результате взаимодействия солнечного ветра с магнитным полем Земли.

Параметры геомагнитной активности

Есть два аспекта, по которым информация о геомагнитной обстановке важна для оценки прохождения радиоволн. С одной стороны, с ростом возмущённости магнитного поля Земли разрушается ионосферный слой F, что негативно сказывается на прохождении коротких волн. С другой - возникают условия для аврорального прохождения на УКВ.

Индексы A и К (A-Ind/K-Ind)

Состояние магнитного поля Земли характеризуется индексами A и K. Увеличение значения индекса K свидетельствует о нарастающей его нестабильности. Значения K, превышающие 4 означают наличие магнитной бури. В качестве базовой величины для определения динамики изменения значений индекса K используется индекс A.

Аврора (Aurora/Aur Act)

Значение этого параметра является производной величиной от уровня мощности солнечной энергии, измеряемой в гигаваттах, которая достигает полярных областей Земли. Параметр может принимать значения в интервале от 1 до 10. Чем больше уровень солнечной энергии, тем сильнее ионизация слоя F ионосферы. Чем больше значение этого параметра, тем меньшую широту имеет граница авроральной шапки и тем выше вероятность возникновения полярных сияний. При высоких значениях параметра появляется возможность для проведения дальних радиосвязей на УКВ, но при этом полярные трассы на КВ частотах могут быть частично или полностью заблокированы.

Широта (Aur Lat)

Максимальная широта, на которой возможно авроральное прохождение.

Максимально применимая частота (MUF)

Значение максимально применимой частоты, измеренное в указанной метеорологической обсерватории (или обсерваториях, в зависимости от вида баннера), на приведённый момент времени (UTC).

Затухание на трассе Земля-Луна-Земла (EME Deg)

Этот параметр характеризует величину затухания в децибелах радиосигнала, отражённого от лунной поверхности на трассе Земля-Луна-Земля, и может принимать следующие значения: Very Poor (> 5.5 дБ), Poor (> 4 дБ), Fair (> 2.5 дБ), Good (> 1.5 дБ), Excellent (

Основные понятия по передаче информации

Средой распространения радиоволн может быть как естественная трасса, так и искусственная. Естественной трассой является земная поверхность, атмосфера или космическое пространство. Такая среда не поддается управлению, что весьма важно для организации радиосвязи. Пути распространения радиоволн по естественным трассам имеют вид:

Радиоволны (1) распространяются в непосредственной близости Земли называют земными. Наиболее заметное влияние на распространение радиоволн в атмосфере оказывают тропосфера и ионосфера. Распространение тропосферных волн (2) в тропосфере происходит вследствие рассеяния и отражения от неоднородностей тропосферы радиоволны (3) распространяются путем отражения от ионосферы, или рассеяния в ней называют ионосферными. Радиоволны 4,5 используются для радиолиний Земля-космос, космос-космос и не имеют специального названия. В свободном пространстве радиоволна обладает поперечной структурой, т.е. входящие в ее состав взаимосвязанные электрическое и магнитные поля перпендикулярны друг другу и направлению распространения. На рис.13 вектор E характеризует в некоторый момент времени направление электрического поля волны, вектор H-магнитного поля, вектор П-направление распространения э.м волны. Расположение вектора Е в пространстве характеризует поляризацию радиоволны. В зависимости от изменения направления вектора поляризация может быть линейной, круговой, эллиптической. При линейной поляризации вектор Е в процессе распространения остается параллельным самому себе, периодически меняясь по величине и направлению. Математический закон изменения вектора при условии, что в прямоугольной системе координат он изменяется в плоскости проходящей через ось Z, можно записать: Ez=Emcos(?t-kz) (1) или в комплексной форме: Ez=Em*(e**j)*cos(?t-kz) (2), где ?=2πƒ-κруговая частота, k=2π/λ – пространственная частота или волновой коэффициент. В общем случае величина k имеет смысл вектора и характеризует направление распространения волны. Закон изменения вектора H записывается аналогично в силу того, что только при этом условии возможно распространение радиоволн. В случае распространения линейно поляризованной волны вблизи раздела 2х сред различают вертикальную поляризацию если вектор E лежит в плоскости падения волны и горизонтальную, если вектор E параллелен границе раздела. Понятие поляризации относительное, в общем случае рассматривают волну поляризованную произвольно относительно границ раздела. В этом случае вектор Е раскладывают на две составляющие, одна из которых будет соответствовать вертикальной поляризации, а вторая – горизонтальной. При круговой поляризации вектор Е оставаясь постоянным по величине, вращается таким образом, что его конец описывает окружность. При эллиптической поляризации вектор Е меняется во времени по направлению и величине что его конец описывает эллипс.

Поляризация радиоволн определяется типом передающей антенны и физическими свойствами среды, в которой происходит распространение радиоволн. Только в космическом пространстве радиоволны распространяются как в свободном пространстве. В ином случае условие распространения определяется электрическими свойствами Земли и атмосферы, а также рельефом местности. Земная поверхность оказывает существенное влияние на распространение земных радиоволн. Ее элементарные свойства характеризуются в основном двумя параметрами: диэлектрической проницаемостью ? и проводимостью ?. Для земной поверхности однородной по глубине характерно постоянство параметров ? и ? во всем диапазоне радиоволн длиннее метровых. На дм и более коротких волнах ? уменьшается, а ? увеличивается с увеличением частоты. Наибольшее значение ? и ? имеют жидкие среды, а сухая почва, лед, снег, растительность имеют относительно малые значения ? и ?. Поэтому в зависимости от частоты радиоволн свойства земной поверхности меняются. Например для см диапазона морская вода считается диэлектриком, а влажная почва может рассматриваться как диэлектрик для метровых и более коротких волн. Параметры ε и γ определяют степень поглощения энергии радиоволны при распространении над земной поверхностью количественно потери энергии описываются коэффициентом поглощения α≈6πγ/√(ε). (3)

Физические потери обусловлены переходом энергии радиоволны в тепловую энергию движения молекул среды распространения. При распространении радиоволны в морской воде и влажной почве на низких частотах с повышением частоты коэффициент поглощения возрастает, на высоких частотах он перестает изменяться, как это имеет место в диэлектрике. Если э.м. волна падает на гладкую поверхность Земли, то она частично отражается от границы раздела сред и частично переходит в глубь второй среды. Поэтому в атмосфере имеются падающие и отраженные волны, а во второй среде – преломленная волна. При отражении волн может меняться ее поляризация, а преломленная часть волны поглощается средой. Отражение радиоволн от ровной плоской поверхности подчиняется закону геометрической оптики. Если поверхность земли не ровная, то радиоволны отражаются в различных направлениях, в том числе и в обратном. Рассеянный сигнал может иметь помимо составляющей той же поляризации, что и падающая волна составляющую ортогональную поляризацию. Поверхность считается ровной, если максимальная высота неровности hн удовлетворяет условию: hн<<λ/(8cosφ) (4). , γде ?-угол падения радиоволны. Для УКВ линии, при которой связь осуществляется только на расстоянии прямой видимости поднятие антенн над поверхностью земли позволяет увеличить протяженность связи. Для СВ и ДВ увеличение протяженности радиолиний обеспечивается дифракцией радиоволн, т.е. огибанием препятствий, встречающихся на их пути. Влияние тропосферы на распространение радиоволн также, как и в случае распространения земных радиоволн в основном определяется характером изменения диэлектрической проницаемости и проводимости среды, которые в свою очередь зависят от физико-химических свойств газов, входящих в тропосферу. Относительный газовый состав тропосферы остается постоянным по всей высоте, изменяется лишь содержание водяных паров, которые зависят от метеорологических условий и убывают с высотой. При распространении в тропосфере радиоволны см-го и более коротковолнового диапазона она теряет энергию вследствие поглощения каплями воды и рассеяния в них. При прохождении радиоволн в каждой капельке воды наводятся токи поляризации, которые обуславливают потери энергии. При этом каждая капля переизлучает э.м. волны, причем равномерно во все стороны, что и приводит к рассеянию мощности радиоволны. Мм- волны испытывают добавочное поглощение в молекулах водяного пара и кислорода. При распределении радиоволн в тропосфере наблюдаются искривления траектории волны, причем степень искривления и направления волны зависят от состояния тропосферы. Это явление искривления траектории называемое рефракцией объясняется изменением диэлектрической проницаемости ? и показателя преломления тропосферы с высотой. Представим тропосферу в виде тонких сферических слоев с неизменными в слое и отличающимися в разных слоях коэффициентами преломления. При прохождении радиоволны через границы слоев она будет преломляться. Если коэффициент преломления убывает с высотой, то угол преломления увеличивается, т.е. dn/dh<0, и имеет место положительная тропосферная рефракция. Если dn/dh>0, то имеет место отрицательная тропосферная рефракция и траектории радиоволн искривляются вверх от земли. При положительной тропосферной рефракции имеет место 3 частных случая: 1) нормальная рефракция 2) критическая рефракция 3) сверхрефракция Нормальная тропосферная рефракция происходит в нормальной тропосфере, параметры которой (P, t, влажность высота) соответствует некоторому среднему значению. Траектория распределения радиоволн при этом искривляется в сторону земной поверхности, что приводит к увеличению дальности радиолинии. Степень отклонения радиоволн зависит от длины волны и от состояния тропосферы. При некоторых условиях искривление такое, что радиоволна распространяется параллельно земле на постоянной высоте. Такой вид рефракции называется критической. При резком убывании коэффициента преломления с высотой происходит полное внутреннее отражение радиоволны от тропосферы, и она возвращается на землю. Это явление называется сверхрефракцией и наблюдается в диапазоне УКВ.

Когда область сверхрефракции занимает значительное расстояние над земной поверхностью УКВ может распространяться на весьма большие расстояния. Радиоволна в этом случае распространяется путем последовательного чередования 2х явлений: рефракции в тропосфере и отражения от земли. Это явление получило название распространение радиоволн в условиях тропосферного волновода. Такое волноводное распространение возможно для см и дм волн. Высота тропосферных волноводов может достигать несколько десятков метров. В тропосфере создаются и другие условия обеспечивающие дальнее распространение радиоволн. На высотах 1-3 км наблюдаются инверсионные слои, т.е. слои с резким изменением коэффициента преломления, которые могут отражать радиоволны. Толщина инверсионного слоя может колебаться от нескольких метров до ста метров. При этом коэффициент отражения имеет достаточную величину только для самых пологих лучей при малой толщине слоя по сравнению с длиной волны из этого следует что достаточная интенсивность отражений наблюдается на метровых волнах. Длинные волны отражаются слабее. Отражаясь от высоких инверсионных слоев радиоволны могут распространяться на расстояние до 200-400 км. Однако это явление, как и тропосферный волновод для создания регулярно действующей радиолинии ограничено нерегулярностью проявления. Более реальным является использование дальнего тропосферного распространения за рассеяния УКВ на неоднородностях тропосферы. Неоднородности тропосферы представляют собой области, в которых диэлектрическая проницаемость отличается от среднего значения для окружающей тропосферы. Неоднородности создают вторичное излучение, носящее многолучевой характер. Максимум переизлучения ориентирован в сторону первоначального распространения волны и лишь некоторая часть в сторону. Протяженность радиолинии в случае тропосферного рассеяния достигает 300-500 км. Такие радиолинии широко используются в настоящее время там, где нельзя установить промежуточные ретрансляционные станции (над проливами, в северных и мало населенных районах). Эти радиолинии обеспечивают хорошую надежность передачи телефонных и телеграфных сообщений. Влияние ионосферы на распространение радиоволн обуславливается двумя основными факторами - наличием неоднородностей и относительно высокой концентрацией электронов. Неоднородности ионосферы представляют собой некоторые области, электронная плотность в которых отличается от среднего значения на данной высоте. Размеры неоднородностей могут быть от нескольких метров до нескольких километров. В области D преобладают мелкие неоднородности размером до десятков метров, в слое Е до 200-300 м, а в слое F до нескольких километров. Хотя неоднородности ионосферы постоянно меняются, тем не менее они используются радиосвязи на метровых волнах на дальности 1-2 тыс. км. Наличие в ионосфере электронов и ионов определяет величину диэлектрической проницаемости, от которой зависит затухания ионосферных волн. Диэлектрическая проницаемость ионизированного газа всегда <1 и зависит от частоты радиоволны. ε≈1-81*Nэ/f 2 (5), где f- рабочая частота, Nэ – электронная плотность. Из формулы (5) видно, что при некотором значении электронной плотности диэлектрическая проницаемость может стать равной 0. Частота f 0 при которой ε=0 называется собственной частотой ионизированного газа. В этом случае формула (5) имеет вид: (6). При f<f 0 диэлектрическая проницаемость оказывается меньше 0. Это означает, что при этом радиоволны в ионизированной среде не распространяются, т.к. диэлектрическая проницаемость ионизированного газа зависит от частоты колебаний, то скорость распространения радиоволн также зависит от частоты. Среды в которых скорость распространения радиоволн зависит от частоты называются диспергирующими. В этих средах различают фазовую и групповую скорости распространения радиоволн. Фазовая скорость – это скорость перемещения фронта волны, т.е. геометрического места точек с постоянной фазой при распространении монохроматической волны. Для ионизированного газа без учета потерь фазовая скорость (7). Из формулы (7) видно что, каждой частоте соответствует своя фазовая скорость. Эта скорость > скорости света в свободном пространстве. Таким образом дисперсия волн проявляется при одновременном распространении нескольких монохроматических волн различных частот, что практически всегда имеет место. Спектральная составляющая радиосигнала в диспергирующей среде распространяется с разными фазовыми скоростями, что приводит к искажению сигнала. Групповая скорость – это скорость распространения максимума огибающей сигнала. Для ионизированного газа групповая скорость Uгр распространения волны в диспергирующей среде определяется выражением: (8). Γрупповая и фазовая скорости связаны соотношением: Uгр*Uф=с 2 (9) Т.о. в ионизированном газе радиосигналы распространяются со скоростью меньшей скорости света. Очевидно, что при распространении в ионосфере наибольшее искажение будут испытывать широкополосные сигналы, к которым относятся короткие импульсы.

Импульс 1 после прохождения через ионосферу приобретает форму 2. При распространении через ионосферу искажение вследствие дисперсии претерпевают импульсы длительностью в несколько секунд. А длительные телеграфные импульсы из-за дисперсии практически не искажаются. При распространении радиоволны через ионосферу ее траектория искривляется, при определенной диэлектрической проницаемости, электронной плотности, угле падения волны, ее рабочей частоте радиосигнал может отразиться от ионосферы. При этом угол падения Θ должен быть равен или превышать некоторый критический угол Θкр. Отражение радиоволн возможно и при нормальном падении на ионосферу и происходит оно на той высоте, где рабочая частота равна собственной частоте ионизированного газа. Чем больше электронная плотность, тем для более высоких частот выполняется условие отражения. Максимальная частота, при которой радиоволна отражается в случае вертикального падения на ионосферу, называется критической частотой f КР . Если рабочая частота больше критической, то при нормальном падении на ионосферу отражения не происходит и волна уходит в космическое пространство. Во время солнечных вспышек возникают ионосферные магнитные бури ухудшающие УКВ и КВ связь. Т.о. параметры тропосферы и ионосферы флуктуируют во времени. Это приводит к случайным изменениям амплитуды и фазы радиосигнала и вызывает их искажение. Флуктуация амплитуды сигнала называется замиранием.

Распространение средних волн (СВ)

СВ имеют =100-1000 м и могут распространяться как земными, так и ионосферными волнами. Земные радиоволны (РВ) СВ-диап-на испытывают значительные поглощения в полупроводящей поверхности Земли, что ограничивает их распространение расстоянием 500-700 км. Ионосферные РВ СВ-диап-на могут распространятся на гораздо большие расстояния, однако это имеет место в ночное время суток. Днём распространение СВ происходит практически только земной волной, т.к. ионосферная волна поглощается в слое D и быстро затухает. В ночное время слой D исчезает и СВ распространяются путём отражения от слоя Е ионосферы. Т.о. в диап-не СВ на некотором расстоянии от передатчика возможен одновременный приход земной и ионосферной волн (ИВ).

Вследствие того , что длина пути ИВ меняется по случайному закону при изменении электронной плотности ионосферы изменяется разность фаз волн, приходящих в некоторую точку приёма В. Если разность фаз земной и ИВ =0, то сигнал максимален, а если =180 о , то минимален. Такое изменение напряжённости поля, т.е. сигнала, называется ближним замиранием поля.

Возможен и другой вид замирания, так называемое дальнее замирание поля. Оно возникает в случае прихода в некоторую точку С (рис.18) ИВ путём одного (кривая 3) и двух (кривая 2) отражений от ионосферы. Изменение разности фаз этих двух волн так же приводит к колебаниям напряжённости эл. поля. Замирания тем глубже и чаще, чем короче  . Средняя длительность замираний в диапазоне СВ изменяется в пределах от 1с до 10-ков секунд.

Глубокие замирания в диап-не СВ сильно затрудняют приём передаваемой по радиолинии информации. Для борьбы с замираниями на передающей стороне радиолинии применяют специальные антенны, у которых максимум излучения прижат к земной поверхности. В этом случае зона ближних замираний удаляется от передатчика, а дальнее замирание вообще не возникнет, т.к. волна, пришедшая путём двух отражений будет сильно ослаблена. В радиоприёмных устройствах для борьбы с замираниями применяется автоматическая регулировка усиления (АРУ), которая обеспечивает поддержание постоянного уровня сигнала на выходе несмотря на значит. колебания напряжения на входе. Уменьшение уровня ионизации в зимние месяцы позволяет увеличить протяжённость радиолиний в СВ-диап-не зимой.

СВ находят многообразное применение для построения радиосвязи на относительно небольшие расстояния(до 1000 км). На СВ работают радиовещательные станции. В бортовых устройствах СВ используются для радиосвязи и радионавигации.

Распространение коротких волн (КВ)

К КВ относятся РВ с  =(10-100)м . Они могут распространяться как в виде земных (ЗВ), так и ионосферных волн (ИВ). Вследствие сильного поглощения в земн. поверхности и плохих условий дифракции земные РВ КВ диап-на распространяются на расстояния до 100 км. Над морем ЗВ испытывает меньшее поглощение, поэтому дальность КВ радиосвязи ув-ся до нескольких сот км. Если передающие и приёмные антенны поднять над земной поверхностью, поглощение ЗВ уменьшается, а дальность действия радиолинии будет доходить до 1000 км. Это имеет место, например, при радиосвязи между самолётами или между самолётом и землёй. Распространение КВ ионосферной волной происходит путём многократного последовательного отражения от слоя F ионосферы и земной поверхности. КВ не испытывают заметного поглощения при пересечении слоёв E и D, что обеспечивает возможность их распространения на сколь угодно большие расстояния. Для этого требуются радиопередатчики сравнительно небольшой мощности, что является ценной особ-тью КВ-диап-на. Еще одной особенностью этого диап-на является возможность создания направленного излучения РВ, что позволяет уменьшить излучение вдоль земной поверхности и, следовательно, уменьшить потери энергии.

Для связи ионосферной волной в КВ-диапазоне необходимо вып-е двух условий: 1.) волны должны отражаться от ионосферы (И); 2) они не должны сильно поглощаться в слоях И.

Эти условия влияют, прежде всего, на выбор рабочих частот.

Для отражения волны необходимо, чтобы электронная плотность И. была достаточной. Рабочая частота f  , при которой волны отразятся от ионосферы при заданной электронной плотности N Э и угле падения  0 равна:

Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона. Нижняя граница рабочего диапазона определяется степенью поглощения КВ в И.. В диап-не КВ уменьшение поглощения происходит с повышением частоты. Наименьшая применимая частота (НПЧ) определяется из условия получения в некоторой точке пространства достаточной для приёма напряжённости ЭМ поля при данной мощности передатчика. Электронная плотность И. меняется в течение суток, поэтому днём рабочий диапазон волн 10-25м, ночью 35-100м. Необходимость правильного выбора длины волны усложняет организацию радиосвязи.

Для КВ радиолиний характерна ещё одна особенность – наличие так называемой зоны молчания. Зоной молчания (ЗМ) называют кольцевую область вокруг передатчика, в пределах которой невозможен приём РВ. Наличие ЗМ объясняется тем, что земные радиоволны 1 быстро затухают, а ИВ 2 приходят в некоторую точку земной поверхности на значительном удалении от радиопередатчика, т.к. для ИВ, падающих под малыми углами на И. не выполняется условие отражения (10) и они (рис. 19) уходят в космическое пространство. Пределы зоны молчания зависят от рабочей длины волны и уровня электронной плотности. Днём при связи на волнах в 10-25м ЗМ достигает 1000км, а ночью при связи на волнах 35-100м ширина ЗМ уменьшается до нескольких сот км. С увеличением мощности передатчика ЗМ так же уменьшается.

При распространении КВ, так же, как и в средневолновом диапазоне наблюдается явление случайного изменения во времени уровня сигнала, т.е. замирание. Сущ-ют замирания быстрые и медленные.

Быстрые замирания являются следствием многолучевого распространения РВ (рис 20а). Прежде всего причиной замираний служит приход в точку приёма РВ претерпевших одно и двукратное отражение от И.. Радиоволны 2 и 3 проходят разные пути, поэтому их фазы неодинаковы. Кроме того, изменение электронной плотности И. приводит к изменению длины пути каждой волны. Такие изменения происходят непрерывно, поэтому колебание напряж-ти эл. поля в диап-не КВ являются частыми и глубокими. Замирания радиосигналов вызываются также рассеянием РВ на неоднородностях И.(рис 20б) и интерференции рассеянных волн. ИВ-на КВ-диап-на под действием м. поля земли распадается на две составляющие – обыкновенную и необыкновенную, распространяющиеся с разными фазовыми скоростями (рис 20в). Интерференция составляющих магниторасщеплённой волны также приводит к замираниям. При отражениях от И. наблюдается также поворот плоскости поляризации волны. Если приёмная антенна принимает волны одной поляризации, то случайные изменения поляризации РВ-ны приведет к колебаниям уровня входящего сигнала. Все указанные причины замирания сигнала как правило действуют одновременно. Изменение поглощения РВ в И. также вызывает замирание, по времени проявления они медленнее.

Для борьбы с замираниями применяют направленные антенны, организуют приём радиоволн на разнесённые антенны, т.к. величина разноса порядка 10 обеспечивает надёжный приём. Эффективным является разнесение антенн по поляризации, т.е. приём РВ на две антенны, имеющие взаимно перпендикулярную поляризацию. При благоприятных условиях распространения КВ могут огибать земной шар один или несколько раз.

Тогда в точке приёма помимо основного сигнала с некоторым опозданием (0.1с) возможно появление такого же сигнала. Это явление, называемое радиоэхо ухудшает качество приёма радиосигналов. КВ нашли широкое и весьма многообразное применение прежде всего в организации дальней связи для радионавигации и радиовещания, в целях радиолокации для загоризонтного обнаружения объектов.

Распространение УКВ

К УКВ относят сравнительно большой диапазон волн =10-0.001м. Диапазон УКВ делят на поддиапазоны метровых (МВ), дециметровых (СМ), сантиметровых (СМ) и миллиметровых (ММ) волн. Каждый из поддиапазонов имеет свои особенности распространения, однако существуют общеосновные положения, свойственные всему диап-ну УКВ. Условия распространения УКВ определяются прежде всего свойствами трассы. УКВ слабо дифрагируют вокруг выпуклой поверхности Земли и крупных неровностей на ней и по этой причине распространяются на расстояния лишь незначительно превышающие дальность прямой видимости. Для того чтобы увеличить дальность УКВ-связи и уменьшить влияние окружающих антенну неровностей радиолинии стремятся поднять над земной поверхностью по возможности выше. Дальность действия радиолинии при этом с учётом атмосферной рефракции, определяется формулой

где h 1 , h 2 - высота поднятия антенн в метрах, D – дальность радиолинии в км. Если протяжённость УКВ радиолинии много меньше предельно возможной дальности прямой видимости, то сферичность Земли, рефракция в тропосфере не влияют на распространение РВ. Для подобных радиолиний характерны большая устойчивость и неизменность уровня радиосигнала во времени, если передатчик и приёмник стационарные. Если хотя бы один из абонентов УКВ радиолинии является подвижным объектом, то уровень радиосигнала меняется во времени вследствие изменении угла наблюдения при движении объекта и изрезанности (?) зоны излучения стационарной передающей антенны.

Если протяжённость УКВ радиолинии превышает пределы прямой видимости, то на качество её работы влияет сферичность Земли, явление рефракции, а также метеорологические условия. Сферичность Земли оказывает заметное ослабляющее действие, а тропосферная рефракция большей частью улучшает условия приёма. При нормальной тропосферной рефракции протяж-ть УКВ радиолинии может превышать пределы прямой видимости на 15. ДЛЯ наземных радиолиний с низко расположенными антеннами максимальная дальность распространения УКВ не превышает нескольких км. С антеннами , поднятыми на высоту порядка 20-25м максимальная дальность составляет 40-60 км. Для самолётов, летящих на средних высотах она равна 300-400 км. При распространении УКВ над пересечённой местностью препятствия ослабляют сигналы в том случае, если они перекрывают линию прямой видимости между антеннами приёмо-передающих устройств.

Вместе с тем, на трассах УКВ в горных условиях наблюдается явление улучшения распространения РВ. Например, на трассах протяжённостью 100-150 км проходящих через горы высотой 1-2 км наблюдается явление усиления препятствием. Это явление заключается в том, что интенсивность ЭМ поля радиоволны при некотором удалении за препятствие оказывается больше, чем в случае распространения без препятствия. Объясняется это тем, что вершина горы служит естественным пассивным ретранслятором.

Поле, возбуждающее вершину горы складывается из прямой волны 1 и отражённой волны 2. Волны дифрагируют на острой вершине и распространяются в область за гору. К месту расположения приёмной антенны А2 приходят волны 3 и 4, сумма которых значительно превышает уровень сигнала в этой точке пространства при распространении РВ без препятствия. Явление усиления препятствием экономически выгодно и позволяет организовать радиолинию в горах без ретрансляционной станции.

Распространение УКВ на большие расстояния (до 200-1000 км) возможно путём рассеяния на неоднородностях тропосферы, которые действуют как вторичные излучатели. Поле, создаваемое вблизи земной поверхности есть результат интерференции полей, переизлучённых большим числом неоднородностей. На неоднородностях тропосферы хорошо рассеиваются волны см. и дм. диап-нов. Волны метрового диап-на переизлучаются неоднородностями ионосферы.

Максимальная протяжённость радиолинии, использующей ионосферные волны метрового диап-на достигает 2000-2300 км. Такая радиосвязь имеет большое преим-во перед коротковолновыми линиями связи в возможности круглосуточной работы на одной частоте без заметных нарушений связи.

Сверхдальняя связь на УКВ может быть основана на использовании явления сверхрефракции в тропосфере. Если область сверхрефракции занимает значительный объём над земной поверхностью, то при этом обеспечивается распространение УКВ на большие расстояния в условиях, так называемого, тропосферного волновода. Такая связь имеет недостатки: 1) приём радиоволн возможен, если приёмник и передатчик находятся в пределах волновода; 2) нерегулярное появление волноводов не может обеспечить устойчивую связь на больших расстояниях.

Явление сверхрефракции имеет и негативную сторону. Оно может служить причиной взаимных помех, создаваемых станциями, работающими в см-ровом диап-не, а также помех радиолокационным станциям обнаружения воздушных объектов.

УКВ широко применяются на космических радиолиниях, подразделяющихся на виды Земля-космос и космос-космос. Межпланетная плазма оказывает слабое поглощающее или рассеивающее воздействие на радиоволны. На р/линии Земля-космос решающее значение имеет ослабление сигналов из-за большой протяжённости трассы и поглощения в атмосфере Земли. Для космических систем связи оптимальными являются волны длиной от 3 до 10 см.

В современных линиях радиосвязи УКВ занимают особое место, т.к. обладают рядом преимуществ по сравнению с РВ-нами других диап-нов:

1.Диапазон УКВ занимает очень широкий спектр частот, что позволяет разместить в нём большое количество одновременно работающих без взаимных помех радиосредств, а также маневрировать их рабочей длиной волны.

2.В диап-не УКВ возможно создание широкополосных радиолиний, таких как телевизионные линии или широкополосные радиолинии с ЧМ.

3.Применение УКВ позволяет сравнительно легко осуществлять остронаправленное излучение и приём радиоволн с помощью антенн относит-но небольших размеров.

4.Радиоприём на УКВ в меньшей степени подвержен воздействию атмосферных и промышленных помех.

5.Ограничение дальности распространения УКВ обеспечивает относительную скрытность передачи информации.

МВ и ДМВ используют для передачи ТВ изображений, для радиосвязи самолётов между собой и с наземными пунктами. См-ровые волны прим-ся для линий связи широкого назнач-я, для такой же связи применяются и мм-ровые волны.